1
|
Miao R, Wu H, Liang T, Fan J. Why do similar 1D-polyhedron-chain copper chloride semiconductors have 2-order-distinct luminescence quantum efficiencies? J Chem Phys 2024; 161:244704. [PMID: 39714006 DOI: 10.1063/5.0237879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
The "green" copper halides with one-dimensional polyhedron chains are very interesting novel semiconductors. These weakly interacting parallel quantum wires (1D polyhedron chains) play key roles in their photophysical properties. Unlike Cs3Cu2I5, which has been much investigated, its homologous compounds Cs3Cu2Cl5 and CsCu2Cl3 remain less studied and their properties are controversial. Both of them are composed of specific 1D-polyhedron-chains. We report the synthesis and comparatively study the photophysical properties of the single crystals of Cs3Cu2Cl5 and CsCu2Cl3. They exhibit green and orange emissions, respectively. Surprisingly, their luminescence quantum efficiencies have a giant difference of over two orders of magnitude (96.7% vs 0.7%). The CsCu2Cl3 crystals exhibit much slower radiative transition and substantially faster nonradiative transition. The experiment in combination with the density functional theory calculation reveals that their 1D-polyhedron-chains have distinct bonding structures and degrees of distortion. This leads to different distributions of electron wave functions and different concentrations of carrier-trapping chlorine vacancies, which account for their highly contrasted quantum efficiencies. The CsCu2Cl3 and Cs3Cu2Cl5 crystals exhibit easy phase transition between each other driven by the changed temperature or ethanol erosion owing to their resembling skeleton structures of 1D polyhedral chain.
Collapse
Affiliation(s)
- Ruonan Miao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Huaxin Wu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Tianyuan Liang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiyang Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
2
|
Dou Z, Lin Z, Wang R, Han M, Ding J, Wang H, Luo X, Cheng Y, Han N. High-pressure effects on the electronic properties and photoluminescence of Ag-doped CsCu 2I 3. Phys Chem Chem Phys 2024. [PMID: 39015083 DOI: 10.1039/d4cp01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
CsCu2I3 is a popular lead-free metal halide perovskite with good thermal and air stability. To facilitate its applications in optoelectronics, Ag doping and high pressure are employed in this work to improve the optoelectronic properties of CsCu2I3. Using first-principles calculations and experiments, the structural phase change of 10% Ag-doped CsCu2I3 is found to occur at about 4.0 GPa. This reveals the regulation of band structures by hydrostatic pressure. In addition, the high pressure not only increases the emission energy of photoluminescence of 10% Ag-doped CsCu2I3 by more than 0.2 eV, but also increases the emission intensity by multiple times. Finally, the origin of luminescence in 10% Ag-doped CsCu2I3 is attributed to the I vacancies. This work provides insight into the structure and optoelectronic properties of 10% Ag-doped CsCu2I3, and offers significant guidance for the design and manufacturing of future luminescence devices.
Collapse
Affiliation(s)
- Zan Dou
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Zhihua Lin
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Rong Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengmeng Han
- China Petroleum Engineering & Construction Corp. North China Company, Middle Jianshe Road, Renqiu 062552, China
| | - Jianxu Ding
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haoyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaoguang Luo
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Nannan Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
3
|
Gao Y, Xu Z, Ye L, Wang Y, Zhuang X. A zero-dimensional hybrid copper(I) bromide single crystal with highly efficient green emission. Phys Chem Chem Phys 2024; 26:2472-2477. [PMID: 38168950 DOI: 10.1039/d3cp05140d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lead-free metal halides are considered as alternatives to lead-based perovskites due to their low toxicity, rich structural diversity, and high luminescence properties. We report millimeter-sized single crystals of a new zero-dimensional (0D) copper(I)-based hybrid material, (AEP)2Cu2Br6·2Br·2H2O (AEP = C6H18N33+), which exhibits bright broadband green photoluminescence (PL) at 510 nm with a Stokes shift of 220 nm and a PL lifetime of 121.1 μs. Density functional theory (DFT) calculations and experimental studies reveal that the green light can be attributed to self-trapping exciton (STE) emission. It is worth mentioning that this crystal has a high photoluminescence quantum yield (PLQY) of 90.5%, which is higher than most copper halides.
Collapse
Affiliation(s)
- Yingui Gao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihuang Xu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Liwang Ye
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yuanjie Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xinxin Zhuang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ma Z, Ji X, Lin S, Chen X, Wu D, Li X, Zhang Y, Shan C, Shi Z, Fang X. Recent Advances and Opportunities of Eco-Friendly Ternary Copper Halides: A New Superstar in Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300731. [PMID: 36854310 DOI: 10.1002/adma.202300731] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Recently, the newly-emerging lead-free metal-halide materials with less toxicity and superior optoelectronic properties have received wide attention as the safer and potentially more robust alternatives to lead-based perovskite counterparts. Among them, ternary copper halides (TCHs) have become a vital group due to their unique features, including abundant structural diversity, ease of synthesis, unprecedented optoelectronic properties, high abundance, and low cost. Although the recent efforts in this field have made certain progresses, some scientific and technological issues still remain unresolved. Herein, a comprehensive and up-to-date overview of recent progress on the fundamental characteristics of TCH materials and their versatile applications is presented, which contains topics such as: i) crystal and electronic structure features and synthesis strategies; ii) mechanisms of self-trapped excitons, luminescence regulation, and environmental stability; and iii) their burgeoning optoelectronic devices of phosphor-converted white light-emitting diodes (WLEDs), electroluminescent LEDs, anti-counterfeiting, X-ray scintillators, photodetectors, sensors, and memristors. Finally, the current challenges together with future perspectives on the development of TCH materials and applications are also critically described, which is considered to be critical for accelerating the commercialization of these rapidly evolving technologies.
Collapse
Affiliation(s)
- Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xinzhen Ji
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Shuailing Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xu Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Di Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Yu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Chongxin Shan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Institute of Optoelectronics, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
5
|
Meng L, Vu TV, Criscenti LJ, Ho TA, Qin Y, Fan H. Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles. Chem Rev 2023; 123:10206-10257. [PMID: 37523660 DOI: 10.1021/acs.chemrev.3c00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.
Collapse
Affiliation(s)
- Lingyao Meng
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Tuan V Vu
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Louise J Criscenti
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yang Qin
- Department of Chemical & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Mansfield, Connecticut 06269, United States
| | - Hongyou Fan
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
6
|
Meng X, Ji S, Wang Q, Wang X, Bai T, Zhang R, Yang B, Li Y, Shao Z, Jiang J, Han K, Liu F. Organic-Inorganic Hybrid Cuprous-Based Metal Halides for Warm White Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203596. [PMID: 36068152 PMCID: PMC9631088 DOI: 10.1002/advs.202203596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Indexed: 05/21/2023]
Abstract
Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2 AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+ )-based metal halide MA2 CuCl3 (MA = CH3 NH3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2 CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2 CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2 CuCl3 has a great potential for the single-component indoor lighting and display applications.
Collapse
Affiliation(s)
- Xuan Meng
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Sujun Ji
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Qiujie Wang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Xiaochen Wang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Tianxin Bai
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of ScienceDalian116023P. R. China
| | - Yimeng Li
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101P. R. China
| | - Zhipeng Shao
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101P. R. China
| | - Junke Jiang
- ISCR (Institut des Sciences Chimiques de Rennes)‐UMR CNRS 6226ENSCR, Université de RennesRennes 35700France
| | - Ke‐li Han
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of ScienceDalian116023P. R. China
| | - Feng Liu
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| |
Collapse
|
7
|
Xing X, Tong T, Mohebinia M, Wang D, Ren Z, Hadjiev VG, Wang Z, Bao J. Photoluminescence and Raman Spectra of One-Dimensional Lead-free Perovskite CsCu 2I 3 Single-Crystal Wires. J Phys Chem Lett 2022; 13:6447-6454. [PMID: 35816284 DOI: 10.1021/acs.jpclett.2c01544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead-free highly luminescent CsCu2I3 perovskite has attracted much attention recently, but agreements on basic optical properties have remained unsettled. By correlating X-ray diffraction with the photoluminescence (PL) of CsCu2I3 single-crystal wires, we first show that blue PL at 420 nm originates from CuI. We then exclude defect states as a source for the broadband emission centered at 570 nm from the lack of defect absorption, PL under sub-bandgap photoexcitation, observations of a linear dependence of PL intensity on excitation laser power, and a strong spectral blueshift under mild hydrostatic pressure. Finally, using a model of the self-trapped exciton and the associated coordinate configuration diagram, we explain pressure evolutions of PL energy, intensity, and lifetime. Single-crystal wires also enable us to obtain polarization-dependent Raman spectra down to 10 cm-1 and confirm their respective ambient crystal structure of orthorhombic Cmcm and phase transition to Pbnm at ∼5 GPa.
Collapse
Affiliation(s)
- Xinxin Xing
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Electrical & Computer Engineering and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77204, United States
| | - Tian Tong
- Department of Electrical & Computer Engineering and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77204, United States
| | - Mohammadjavad Mohebinia
- Materials Science and Engineering Program, University of Houston, Houston, Texas 77204, United States
| | - Dezhi Wang
- Department of Physics and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77204, United States
| | - Zhifeng Ren
- Department of Physics and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77204, United States
| | - Viktor G Hadjiev
- Department of Mechanical Engineering and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77204, United States
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jiming Bao
- Department of Electrical & Computer Engineering and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77204, United States
- Materials Science and Engineering Program, University of Houston, Houston, Texas 77204, United States
- Department of Physics and Texas Center for Superconductivity (TCSUH), University of Houston, Houston, Texas 77204, United States
| |
Collapse
|