1
|
Paul R, Maity N, Das B, Emadian SS, Kumar A, Krishnamurthy S, Singh AK, Ghosh R. Efficient detection of 45 ppb ammonia at room temperature using Ni-doped CeO 2 octahedral nanostructures. J Colloid Interface Sci 2024; 662:663-675. [PMID: 38368824 DOI: 10.1016/j.jcis.2024.02.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
To meet the requirements in air quality monitors for the public and industrial safety, sensors are required that can selectively detect the concentration of gaseous pollutants down to the parts per million (ppm) and ppb (parts per billion) levels. Herein, we report a remarkable NH3 sensor using Ni-doped CeO2 octahedral nanostructure which efficiently detects NH3 as low as 45 ppb at room temperature. The Ni-doped CeO2 sensor exhibits the maximum response of 42 towards 225 ppm NH3, which is ten-fold higher than pure CeO2. The improved sensing performance is caused by the enhancement of oxygen vacancy, bandgap narrowing, and redox property of CeO2 caused by Ni doping. Density functional theory confirms that O vacancy with Ni at Ce site (VONiCe) augments the sensing capabilities. The Bader charge analysis predicts the amount of charge transfer (0.04 e) between the Ni-CeO2 surface and the NH3 molecule. As well, the high negative adsorption energy (≈750 meV) and lowest distance (1.40 Å) of the NH3 molecule from the sensor surface lowers the detection limit. The present work enlightens the fabrication of sensing elements through defect engineering for ultra-trace detection of NH3 to be useful further in the field of sensor applications.
Collapse
Affiliation(s)
- Rinku Paul
- Materials Processing & Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Nikhilesh Maity
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Biswajit Das
- Materials Processing & Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Seyedeh Sadrieh Emadian
- School of Engineering and Innovations, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Ajay Kumar
- School of Engineering and Innovations, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Satheesh Krishnamurthy
- School of Engineering and Innovations, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | | | - Ranajit Ghosh
- Materials Processing & Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Kastuar SM, Ekuma CE. Chemically tuned intermediate band states in atomically thin Cu xGeSe/SnS quantum material for photovoltaic applications. SCIENCE ADVANCES 2024; 10:eadl6752. [PMID: 38598620 PMCID: PMC11006210 DOI: 10.1126/sciadv.adl6752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
A new generation of quantum material derived from intercalating zerovalent atoms such as Cu into the intrinsic van der Waals gap at the interface of atomically thin two-dimensional GeSe/SnS heterostructure is designed, and their optoelectronic features are explored for next-generation photovoltaic applications. Advanced ab initio modeling reveals that many-body effects induce intermediate band (IB) states, with subband gaps (~0.78 and 1.26 electron volts) ideal for next-generation solar devices, which promise efficiency greater than the Shockley-Queisser limit of ~32%. The charge carriers across the heterojunction are both energetically and spontaneously spatially confined, reducing nonradiative recombination and boosting quantum efficiency. Using this IB material in a solar cell prototype enhances absorption and carrier generation in the near-infrared to visible light range. Tuning the active layer's thickness increases optical activity at wavelengths greater than 600 nm, achieving ~190% external quantum efficiency over a broad solar wavelength range, underscoring its potential in advanced photovoltaic technology.
Collapse
|
3
|
Luo Y, Su W, Chen F, Wu K, Zeng Y, Lu HW. Observation of Strong Anisotropic Interlayer Excitons. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54808-54817. [PMID: 37975532 DOI: 10.1021/acsami.3c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Anisotropic interlayer excitons had been theoretically predicted to exist in two-dimensional (2D) anisotropy/isotropy van der Waals heterojunctions. However, experimental results consolidating the theoretical prediction and exploring the related anisotropic optoelectronic response have not been reported so far. Herein, strong photoluminescence (PL) of anisotropic interlayer excitons is observed in a symmetric anisotropy/isotropy/anisotropy heterojunction exemplified by 3L-ReS2/1L-MoS2/3L-ReS2 using monolayer (1L) MoS2 and trilayer (3L) ReS2 as components. Sharp interlayer exciton PL peaks centered at ∼1.64, ∼1.61, and ∼1.57 eV are only observed at low temperatures of ≤120 K and become more pronounced as the temperature decreases. These interlayer excitons exhibit strong anisotropic PL intensity variations with periodicities of 180° as functions of the incident laser polarization angles. The polarization ratios of these interlayer excitons are calculated to be 1.33-1.45. Our study gives new insight into the manipulation of excitons in 2D materials and paves a new way for a rational design of novel anisotropic optoelectronic devices.
Collapse
Affiliation(s)
- Yu Luo
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Ke Wu
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Yijie Zeng
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Hong-Wei Lu
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| |
Collapse
|
4
|
Luo W, Oyedele AD, Mao N, Puretzky A, Xiao K, Liang L, Ling X. Excitation-Dependent Anisotropic Raman Response of Atomically Thin Pentagonal PdSe 2. ACS PHYSICAL CHEMISTRY AU 2022; 2:482-489. [PMID: 36465836 PMCID: PMC9706783 DOI: 10.1021/acsphyschemau.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/17/2023]
Abstract
The group-10 noble-metal dichalcogenides have recently emerged as a promising group of two-dimensional materials due to their unique crystal structures and fascinating physical properties. In this work, the resonance enhancement of the interlayer breathing mode (B1) and intralayer Ag 1 and Ag 3 modes in atomically thin pentagonal PdSe2 were studied using angle-resolved polarized Raman spectroscopy with 13 excitation wavelengths. Under the excitation energies of 2.33, 2.38, and 2.41 eV, the Raman intensities of both the low-frequency breathing mode B1 and high-frequency mode Ag 1 of all the thicknesses are the strongest when the incident polarization is parallel to the a axis of PdSe2, serving as a fast identification of the crystal orientation of few-layer PdSe2. We demonstrated that the intensities of B1, Ag 1, and Ag 3 modes are the strongest with the excitation energies between 2.18 and 2.38 eV when the incident polarization is parallel to PdSe2 a axis, which arises from the resonance enhancement caused by the absorption. Our investigation reveals the underlying interplay of the anisotropic electron-phonon and electron-photon interactions in the Raman scattering process of atomically thin PdSe2. It paves the way for future applications on PdSe2-based optoelectronics.
Collapse
Affiliation(s)
- Weijun Luo
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Akinola D. Oyedele
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
- Bredesen
Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nannan Mao
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander Puretzky
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kai Xiao
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Liangbo Liang
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xi Ling
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division
of Materials Science and Engineering, Boston
University, Boston, Massachusetts 02215, United States
- The Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Kim JS, Maity N, Kim M, Fu S, Juneja R, Singh A, Akinwande D, Lin JF. Strain-Modulated Interlayer Charge and Energy Transfers in MoS 2/WS 2 Heterobilayer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46841-46849. [PMID: 36195978 DOI: 10.1021/acsami.2c10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excitonic properties in 2D heterobilayers are closely governed by charge transfer (CT) and excitonic energy transfer (ET) at van der Waals interfaces. Various means have been employed to modulate the interlayer CT and ET, including electrical gating and modifying interlayer spacing, but with limited extent in their controllability. Here, we report a novel method to modulate these transfers in the MoS2/WS2 heterobilayer by applying compressive strain under hydrostatic pressure. Raman and photoluminescence measurements, combined with density functional theory calculations, show pressure-enhanced interlayer interaction of the heterobilayer. Heterobilayer-to-monolayer photoluminescence intensity ratio (η) of WS2 decreases by five times up to ≈4 GPa, suggesting enhanced ET, whereas it increases by an order of magnitude at higher pressures and reaches almost unity. Theoretical calculations show that orbital switching and charge transfers in the heterobilayer's hybridized conduction band are responsible for the non-monotonic modulation of the transfers. Our findings provide a compelling approach toward effective mechanical control of CT and ET in 2D excitonic devices.
Collapse
Affiliation(s)
- Joon-Seok Kim
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas78758, United States
| | - Nikhilesh Maity
- Materials Research Centre, Indian Institute of Science, Bangalore560012, India
| | - Myungsoo Kim
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas78758, United States
| | - Suyu Fu
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, AustinTexas78712, United States
| | - Rinkle Juneja
- Materials Research Centre, Indian Institute of Science, Bangalore560012, India
| | - Abhishek Singh
- Materials Research Centre, Indian Institute of Science, Bangalore560012, India
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas78758, United States
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, AustinTexas78712, United States
| |
Collapse
|
6
|
Zhu H, Shen Y, Zhang Q, Fang Q, Chen L, Yang X, Wang B. Recycled Bifunctional Heterostructure Material: g-GaN/SnS for Photocatalytic Decomposition of Water and Efficient Detection of NO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10886-10892. [PMID: 36001800 DOI: 10.1021/acs.langmuir.2c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, the energy crisis and environmental pollution problems have become increasingly severe. There is an urgent need to develop a class of multifunctional materials that can both produce clean energy and detect harmful gases. Herein, we propose a g-GaN/SnS heterostructure and explored its dual-optimal performance in photocatalytic hydrogen production and gas detection. Our results demonstrated that the g-GaN/SnS heterostructure has a suitable type II band alignment and excellent absorption in the visible range, which both indicate its potential application in photocatalysis. Furthermore, when the g-GaN/SnS heterostructure acted as a gas detection material, it was consistently susceptible to NO2 gas molecules, according to charge transfer. Additionally, it has a very suitable material recovery time (∼0.5 h) when used for NO2 detection, illustrating the recyclability of the material. Interestingly, the applied electric field of -0.4 V/Å can greatly increase the absorption coefficient in the visible range to 150% of the original. Also, the applied electric field of 0.6 V/Å can substantially enhance the gas detection sensitivity by 27% compared to the case without the electric field. Thus, the g-GaN/SnS heterostructure we proposed not only has the advantage of being bifunctional but also has the potential to be recycled.
Collapse
Affiliation(s)
- Hua Zhu
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou 310018, China
| | - Yang Shen
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou 310018, China
- School of Materials Science and Engineering, Zhejiang University, Zhejiang 310027, China
| | - Qihao Zhang
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou 310018, China
| | - Qianglong Fang
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou 310018, China
| | - Liang Chen
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou 310018, China
| | - Xiaodong Yang
- Key Laboratory of Ecophysics and Department of Physics, Shihezi University, Xinjiang 832003, China
| | - Baolin Wang
- College of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|