1
|
Zhan H, Liu J, Fang Q, Huang Y, Chen X, Ni Y, Zhou L, Chen Z. Combining Fast Pure Shift NMR and GEMSTONE-Based Selective TOCSY for Efficient NMR Analysis of Complex Systems. Anal Chem 2024; 96:13742-13748. [PMID: 39115999 DOI: 10.1021/acs.analchem.4c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
As one of the commonly used intact detection techniques, liquid NMR spectroscopy offers unparalleled insights into the chemical environments, structures, and dynamics of molecules. However, it generally encounters the challenges of crowded or even overlapped spectra, especially when probing complex sample systems containing numerous components and complicated molecular structures. Herein, we exploit a general NMR protocol for efficient NMR analysis of complex systems by combining fast pure shift NMR and GEMSTONE-based selective TOCSY. First, this protocol enables ultrahigh-selective observation on the coupling networks that are totally correlated with targeted resonances or components, even where they are situated in severely overlapped spectral regions. Second, pure shift simplification is introduced to enhance the spectral resolution and further resolve the subspectra containing spectral congestion, thus facilitating the dissection of overlapped spectra. Additionally, sparse sampling accompanied by spectral reconstruction is adopted to significantly accelerate acquisition and improve spectral quality. The advantages of this protocol were demonstrated on different complex sample systems, including a challenging compound of estradiol, a mixture of sucrose and d-glucose, and natural grape juice, verifying its feasibility and power, and boosting the potential application landscapes in various chemical fields.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jiawei Liu
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiyuan Fang
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xinyu Chen
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Ni
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lingling Zhou
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Zhan H, Liu J, Fang Q, Chen X, Ni Y, Zhou L. Fast Pure Shift NMR Spectroscopy Using Attention-Assisted Deep Neural Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309810. [PMID: 38840448 PMCID: PMC11304274 DOI: 10.1002/advs.202309810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Indexed: 06/07/2024]
Abstract
Pure shift NMR spectroscopy enables the robust probing on molecular structure and dynamics, benefiting from great resolution enhancements. Despite extensive application landscapes in various branches of chemistry, the long experimental times induced by the additional time dimension generally hinder its further developments and practical deployments, especially for multi-dimensional pure shift NMR. Herein, this study proposes and implements the fast, reliable, and robust reconstruction for accelerated pure shift NMR spectroscopy with lightweight attention-assisted deep neural network. This deep learning protocol allows one to regain high-resolution signals and suppress undersampling artifacts, as well as furnish high-fidelity signal intensities along with the accelerated pure shift acquisition, benefitting from the introduction of the attention mechanism to highlight the spectral feature and information of interest. Extensive results of simulated and experimental NMR data demonstrate that this attention-assisted deep learning protocol enables the effective recovery of weak signals that are almost drown in the serious undersampling artifacts, and the distinction and recognition of close chemical shifts even though using merely 5.4% data, highlighting its huge potentials on fast pure shift NMR spectroscopy. As a result, this study affords a promising paradigm for the AI-assisted NMR protocols toward broader applications in chemistry, biology, materials, and life sciences, and among others.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Jiawei Liu
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Qiyuan Fang
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Xinyu Chen
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Yang Ni
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Lingling Zhou
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| |
Collapse
|
3
|
Zhan H, Hao M, Lin E, Zheng Z, Huang C, Cai S, Cao S, Huang Y, Chen Z. A Pure Shift-Based Nuclear Magnetic Resonance Method for In-Phase Three-Dimensional Diffusion-Ordered Spectroscopy. Anal Chem 2023; 95:1002-1007. [PMID: 36579454 DOI: 10.1021/acs.analchem.2c03678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY) plays a vital role in mixture studies. However, its applications to complex mixture samples are generally limited by spectral congestion along the chemical shift domain caused by extensive J coupling networks and abundant compounds. Herein, we develop the in-phase multidimensional DOSY strategy for complex mixture analyses by simultaneously revealing molecular self-diffusion behaviors and multiplet structures with optimal spectral resolution. As a proof of concept, two pure shift-based three-dimensional (3D) DOSY protocols are proposed to record high-resolution 3D spectroscopic view with separated mixture components and their resolved multiplet coupling structures, thus suitable for analyzing complex mixtures that contain abundant compounds and complicated molecular structures, even under adverse magnetic field conditions. Therefore, this study shows a promising tool for component analyses and multiplet structure studies on practical mixture samples.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.,Department of Biomedical Engineering, Anhui Provincial Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mengyou Hao
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Enping Lin
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Zeyu Zheng
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengda Huang
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuhui Cai
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuohui Cao
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqing Huang
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhong Chen
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
4
|
Guo Z, Chen C, Zhao J, Guo X, Jia L, Liu P, Marcus Pedersen C, Hou X, Qiao Y, Wang Y. Mechanism of the dehydration of N-acetyl-d-glucosamine into N-containing platform molecule 3-acetamido-5-acetylfuran: NMR study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
He A, Ni L, Fu H, Zhang X, Yu ZQ, Song J, Yang L, Xu Y, Ozaki Y, Noda I. Retrieving Spectra of Pure Components from the DOSY-NMR Experiment via a Comprehensive Approach Involving the 2D Asynchronous Spectrum, 2D Quotient Spectrum, and Genetic Algorithm Refinement. Anal Chem 2022; 94:12360-12367. [PMID: 36048426 DOI: 10.1021/acs.analchem.2c01386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When diffusion coefficients of different components in a mixture are similar, NMR spectra of pure individual components are difficult to be obtained via a diffusion-ordered spectroscopy (DOSY) experiment. Two-dimensional correlation spectroscopy (2D-COS) is used to analyze the data from the DOSY experiment. Through the properties of the systematic absence of cross-peak (SACP) in the 2D asynchronous spectra, spectra of pure components can be obtained even if their diffusion coefficients are similar. However, fluctuations in peak-position and peak-width are often unavoidable in NMR spectra, which makes SACPs unrecognizable. To address the problem, a 2D quotient spectrum is used to identify the masked SACPs. However, undesirable interference peaks due to the fluctuations in peak-position and peak-width are still present when we extract a spectrum of a component by slicing the 2D asynchronous spectrum across the SACP. A genetic algorithm (GA) is used to select a suitable subset of spectra where the diversities of peak-position and peak-width are significantly reduced. Then, we used the selected spectra to construct a refined 2D asynchronous spectrum so that the spectra of pure components with significant attenuated interference can be obtained. The above approach has been proven to be effective on a model system and a real-world example, demonstrating that 2D-COS possesses a bright perspective in the analysis of the bilinear data from DOSY experiments.
Collapse
Affiliation(s)
- Anqi He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lei Ni
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hui Fu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Analytical Instrumentation Center, Peking University, Beijing 100871, P. R. China
| | - Xiu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Analytical Instrumentation Center, Peking University, Beijing 100871, P. R. China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Lin X, Du S, Huang C, Ni Z, Lin E, Chen B, Chen Y, Huang Y, Chen Z. High-resolution diffusion-order NMR spectroscopy in inhomogeneous magnetic fields via intermolecular zero-quantum coherences. Anal Chim Acta 2022; 1197:339508. [DOI: 10.1016/j.aca.2022.339508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022]
|
7
|
Gao X, Ma M, Pedersen CM, Liu R, Zhang Z, Chang H, Qiao Y, Wang Y. Interactions between PAMAM-NH 2 and 6-Mercaptopurine: Qualitative and Quantitative NMR studies. Chem Asian J 2021; 16:3658-3663. [PMID: 34494362 DOI: 10.1002/asia.202100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Indexed: 11/09/2022]
Abstract
Despite being used as an anti-leukemic drug, the poor solubility of 6-mercaptopurine (6-MP) limits its use in topical and parenteral applications. Dendrimers are commonly used as drug carriers to improve their solubility in aqueous solution. In this work, the interactions between 6-MP and the amine-terminated poly(amidoamine) dendrimers (PAMAM-NH2 ) were investigated by various NMR technology. The chemical shift titrations disclosed that the 6-MP interacted with the surface of PAMAM-NH2 mainly through electrostatics. The determination of diffusion coefficient and relaxation measurements further confirmed the presence of interactions in 6-MP/PAMAM-NH2 complexes. In addition, the encapsulation of 6-MP within the cavity of PAMAM-NH2 was revealed through nuclear Overhauser effect spectroscopy and Saturation Transfer Double Difference analysis. Finally, the binding strength (H-8 is 100% and H-2 is 70%) of 6-MP to PAMAM-NH2 was quantitatively expressed using epitope maps. This study provides a systematic methodology for qualitative and quantitative studies of the interactions between dendrimers and drug molecules in general.
Collapse
Affiliation(s)
- Xueke Gao
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minjun Ma
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Christian Marcus Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Rui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhenzhou Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Honghong Chang
- Shanxi Xuanran Pharmaceutical Technology Co., Ltd., Jinzhong, 030600, P. R. China
| | - Yan Qiao
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingxiong Wang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Pietrzak M, Jopa S, Mames A, Urbańczyk M, Woźny M, Ratajczyk T. Recent Progress in Liquid State Electrochemistry Coupled with NMR Spectroscopy. ChemElectroChem 2021. [DOI: 10.1002/celc.202100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mariusz Pietrzak
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Sylwia Jopa
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Adam Mames
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warsaw Poland
| | - Mateusz Woźny
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|