1
|
Pinillos P, Camiruaga A, Torres-Hernández F, Çarçabal P, Usabiaga I, Fernández JA, Martínez R. Aspartame and Its Microhydrated Aggregates Revealed by Laser Spectroscopy: Water-Sweetener Interactions in the Gas Phase. J Phys Chem A 2024; 128:6714-6721. [PMID: 39091218 PMCID: PMC11331506 DOI: 10.1021/acs.jpca.4c04315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The popular sweetener, aspartame, is an agonist of the tongue's sweet taste receptor. How water molecules affect its conformation or which aspartame atoms are more prone to interact with solvent are helpful questions to understand its activity in different environments. Here, the combination of IR-UV spectroscopic techniques with computational simulations has been successfully applied to characterize aspartame·water0-2 clusters, showing that the addition of water molecules simplifies the conformational panorama of aspartame, favoring the formation of folded structures by interaction with the polar part of the molecule.
Collapse
Affiliation(s)
- Paul Pinillos
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/N, Leioa 48940, Spain
| | - Ander Camiruaga
- Institut
des Sciences Moléculaires d’Orsay (ISMO), Université Paris Saclay, CNRS, Orsay 91405, France
| | - Fernando Torres-Hernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/N, Leioa 48940, Spain
| | - Pierre Çarçabal
- Institut
des Sciences Moléculaires d’Orsay (ISMO), Université Paris Saclay, CNRS, Orsay 91405, France
| | - Imanol Usabiaga
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/N, Leioa 48940, Spain
| | - José A. Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/N, Leioa 48940, Spain
| | - Rodrigo Martínez
- Department
of Chemistry, Faculty of Science and Technology, University of La Rioja, Madre de Dios 53, Logroño 26006, Spain
| |
Collapse
|
2
|
Spencer RJ, Zhanserkeev AA, Yang EL, Steele RP. The Near-Sightedness of Many-Body Interactions in Anharmonic Vibrational Couplings. J Am Chem Soc 2024; 146:15376-15392. [PMID: 38771156 DOI: 10.1021/jacs.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Couplings between vibrational motions are driven by electronic interactions, and these couplings carry special significance in vibrational energy transfer, multidimensional spectroscopy experiments, and simulations of vibrational spectra. In this investigation, the many-body contributions to these couplings are analyzed computationally in the context of clathrate-like alkali metal cation hydrates, including Cs+(H2O)20, Rb+(H2O)20, and K+(H2O)20, using both analytic and quantum-chemistry potential energy surfaces. Although the harmonic spectra and one-dimensional anharmonic spectra depend strongly on these many-body interactions, the mode-pair couplings were, perhaps surprisingly, found to be dominated by one-body effects, even in cases of couplings to low-frequency modes that involved the motion of multiple water molecules. The origin of this effect was traced mainly to geometric distortion within water monomers and cancellation of many-body effects in differential couplings, and the effect was also shown to be agnostic to the identity of the ion. These outcomes provide new understanding of vibrational couplings and suggest the possibility of improved computational methods for the simulation of infrared and Raman spectra.
Collapse
Affiliation(s)
- Ryan J Spencer
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Asylbek A Zhanserkeev
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Emily L Yang
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Zviagin A, Boyarkin OV. Ion Spectroscopy Reveals Structural Difference for Proteins Microhydrated by Retention and Condensation of Water. J Phys Chem A 2024. [PMID: 38489273 DOI: 10.1021/acs.jpca.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature-controlled ion trap or by incomplete dehydration of the folded proteins. In the case of cryogenic condensation, the UV spectra of the complexes exhibit a resolved vibrational structure, which looks similar to the spectrum of bare unfolded ubiquitin. The spectra become, however, broad-band with no structure when complexes of the same size are produced by incomplete dehydration under soft conditions of electrospray ionization. We attribute this spectroscopic dissimilarity to the structural difference of the protein: condensing a few water molecules cannot refold the gas-phase structure of the bare ubiquitin, while the retained water preserves its solution-like folded motif through evaporative cooling. This assessment is firmly confirmed by IR spectroscopy, which reveals the presence of free NH and carboxylic OH stretching vibrations only in the complexes with condensed water.
Collapse
Affiliation(s)
- Andrei Zviagin
- SCI-SB-RB Group, ISIC, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Oleg V Boyarkin
- SCI-SB-RB Group, ISIC, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Ma Z, Chen L, Xu C, Fournier JA. Two-Dimensional Infrared Spectroscopy of Isolated Molecular Ions. J Phys Chem Lett 2023; 14:9683-9689. [PMID: 37871134 DOI: 10.1021/acs.jpclett.3c02661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Two-dimensional infrared (2D IR) spectroscopy of mass-selected, cryogenically cooled molecular ions is presented. Nonlinear response pathways, encoded in the time-domain photodissociation action response of weakly bound N2 messenger tags, were isolated using pulse shaping techniques following excitation with four collinear ultrafast IR pulses. 2D IR spectra of Re(CO)3(CH3CN)3+ ions capture off-diagonal cross-peak bleach signals between the asymmetric and symmetric carbonyl stretching transitions. These cross peaks display intensity variations as a function of pump-probe delay time due to coherent coupling between the vibrational modes. Well-resolved 2D IR features in the congested fingerprint region of protonated caffeine (C8H10N4O2H+) are also reported. Importantly, intense cross-peak signals were observed at 3 ps waiting time, indicating that tag-loss dynamics are not competing with the measured nonlinear signals. These demonstrations pave the way for more precise studies of molecular interactions and dynamics that are not easily obtainable with current condensed-phase methodologies.
Collapse
Affiliation(s)
- Zifan Ma
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Liangyi Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Chuzhi Xu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Zhanserkeev AA, Yang EL, Steele RP. Accelerating Anharmonic Spectroscopy Simulations via Local-Mode, Multilevel Methods. J Chem Theory Comput 2023; 19:5572-5585. [PMID: 37555634 DOI: 10.1021/acs.jctc.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ab initio computer simulations of anharmonic vibrational spectra provide nuanced insight into the vibrational behavior of molecules and complexes. The computational bottleneck in such simulations, particularly for ab initio potentials, is often the generation of mode-coupling potentials. Focusing specifically on two-mode couplings in this analysis, the combination of a local-mode representation and multilevel methods is demonstrated to be particularly symbiotic. In this approach, a low-level quantum chemistry method is employed to predict the pairwise couplings that should be included at the target level of theory in vibrational self-consistent field (and similar) calculations. Pairs that are excluded by this approach are "recycled" at the low level of theory. Furthermore, because this low-level pre-screening will eventually become the computational bottleneck for sufficiently large chemical systems, distance-based truncation is applied to these low-level predictions without substantive loss of accuracy. This combination is demonstrated to yield sub-wavenumber fidelity with reference vibrational transitions when including only a small fraction of target-level couplings; the overhead of predicting these couplings, particularly when employing distance-based, local-mode cutoffs, is a trivial added cost. This combined approach is assessed on a series of test cases, including ethylene, hexatriene, and the alanine dipeptide. Vibrational self-consistent field (VSCF) spectra were obtained with an RI-MP2/cc-pVTZ potential for the dipeptide, at approximately a 5-fold reduction in computational cost. Considerable optimism for increased accelerations for larger systems and higher-order couplings is also justified, based on this investigation.
Collapse
Affiliation(s)
- Asylbek A Zhanserkeev
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Emily L Yang
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Schultz M, Parker SL, Fernando MT, Wellalage MM, Thomas DA. Diserinol Isophthalamide: A Novel Reagent for Complexation with Biomolecular Anions in Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:745-753. [PMID: 36975839 DOI: 10.1021/jasms.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transferring biomolecules from solution to vacuum facilitates a detailed analysis of molecular structure and dynamics by isolating molecules of interest from a complex environment. However, inherent in the ion desolvation process is the loss of solvent hydrogen bonding partners, which are critical for the stability of a condensed-phase structure. Thus, transfer of ions to vacuum can favor structural rearrangement, especially near solvent-accessible charge sites, which tend to adopt intramolecular hydrogen bonding motifs in the absence of solvent. Complexation of monoalkylammonium moieties (e.g., lysine side chains) with crown ethers such as 18-crown-6 can disfavor structural rearrangement of protonated sites, but no equivalent ligand has been investigated for deprotonated groups. Herein we describe diserinol isophthalamide (DIP), a novel reagent for the gas-phase complexation of anionic moieties within biomolecules. Complexation is observed to the C-terminus or side chains of the small model peptides GD, GE, GG, DF-OMe, VYV, YGGFL, and EYMPME in electrospray ionization mass spectrometry (ESI-MS) studies. In addition, complexation is observed with the phosphate and carboxylate moieities of phosphoserine and phosphotyrosine. DIP performs favorably in comparison to an existing anion recognition reagent, 1,1'-(1,2-phenylene)bis(3-phenylurea), that exhibits moderate carboxylate binding in organic solvent. This improved performance in ESI-MS experiments is attributed to reduced steric constraints to complexation with carboxylate groups of larger molecules. Overall, diserinol isophthalamide is an effective complexation reagent that can be applied in future work to study retention of solution-phase structure, investigate intrinsic molecular properties, and examine solvation effects.
Collapse
Affiliation(s)
- Madeline Schultz
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah L Parker
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Maleesha T Fernando
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Miyuru M Wellalage
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel A Thomas
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
7
|
Arildii D, Matsumoto Y, Dopfer O. Microhydration of the Pyrrole Cation (Py +) Revealed by IR Spectroscopy: Ionization-Induced Rearrangement of the Hydrogen-Bonded Network of Py +(H 2O) 2. J Phys Chem A 2023; 127:2523-2535. [PMID: 36898005 DOI: 10.1021/acs.jpca.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Microhydration of heterocyclic aromatic molecules can be an appropriate fundamental model to shed light on intermolecular interactions and functions of macromolecules and biomolecules. We characterize herein the microhydration process of the pyrrole cation (Py+) by infrared photodissociation (IRPD) spectroscopy and dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ). Analysis of IRPD spectra of mass-selected Py+(H2O)2 and its cold Ar-tagged cluster in the NH and OH stretch range combined with geometric parameters of intermolecular structures, binding energies, and natural atomic charge distribution provides a clear picture of the growth of the hydration shell and cooperativity effects. Py+(H2O)2 is formed by stepwise hydration of the acidic NH group of Py+ by a hydrogen-bonded (H2O)2 chain with NH···OH···OH configuration. In this linear H-bonded hydration chain, strong cooperativity, mainly arising from the positive charge, strengthens both the NH···O and OH···O H-bonds with respect to those of Py+H2O and (H2O)2, respectively. The linear chain structure of the Py+(H2O)2 cation is discussed in terms of the ionization-induced rearrangement of the hydration shell of the neutral Py(H2O)2 global minimum characterized by the so-called "σ-π bridge structure" featuring a cyclic NH···OH···OH···π H-bonded network. Emission of the π electron from Py by ionization generates a repulsive interaction between the positive π site of Py+ and the π-bonded OH hydrogen of (H2O)2, thereby breaking this OH···π hydrogen bond and driving the hydration structure toward the linear chain motif of the global minimum on the cation potential.
Collapse
Affiliation(s)
- Dashjargal Arildii
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Yoshiteru Matsumoto
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
- International Research Frontiers Initiative, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
8
|
Achevski B, Tonikj-Ribarska J, Petkovska R, Pejov L. Static and dynamic quantum mechanical methods for exact interpretation of Infrared Multiple Photon Dissociation Spectra: current state and development perspectives. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Blagoj Achevski
- Faculty of Pharmacy, University “Ss Cyril and Methodius”, 1000 Skopje, Republic of North Macedonia
| | - Jasmina Tonikj-Ribarska
- Faculty of Pharmacy, University “Ss Cyril and Methodius”, 1000 Skopje, Republic of North Macedonia
| | - Rumenka Petkovska
- Faculty of Pharmacy, University “Ss Cyril and Methodius”, 1000 Skopje, Republic of North Macedonia
| | - Ljupco Pejov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, University “Ss Cyril and Methodius”, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
9
|
Zviagin A, Kopysov V, Boyarkin OV. Gentle nano-electrospray ion source for reliable and efficient generation of microsolvated ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:114104. [PMID: 36461509 DOI: 10.1063/5.0119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We present herein the design of a nano-electrospray ion source capable of reliable generation of large quantities of microsolvated ions. The source is based on a triple molecular skimmer scheme and can be quickly tuned to generate bare ions or their ionic complexes with up to more than 100 solvent molecules retained from solution. The performance of this source is illustrated by recording the mass spectra of distributions of ionic complexes of protonated water, amino acids, and a small protein ubiquitin. Protonated water complexes with more than 110 molecules and amino acids with more than 45 water molecules could be generated. Although the commercial ion source based on the double ion funnel design with orthogonal injection, which we used in our laboratory, is more efficient in generating ions than our triple skimmer ion source, they both exhibit comparable short-term stability in generating bare ions. In return, only the new source is capable of generating microsolvated ions.
Collapse
Affiliation(s)
- Andrei Zviagin
- Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vladimir Kopysov
- Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Zviagin A, Kopysov V, Nagornova NS, Boyarkin OV. Tracking local and global structural changes in a protein by cold ion spectroscopy. Phys Chem Chem Phys 2022; 24:8158-8165. [PMID: 35332911 DOI: 10.1039/d2cp00217e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Characterization of native structures of proteins in the gas phase remains challenging due to the unpredictable conformational changes the molecules undergo during desolvation and ionization. We spectroscopically studied cryogenically cooled protonated protein ubiquitin and its microhydrated complexes prepared in the gas phase in a range of charge states under different ionization conditions. The UV spectra appear vibrationally resolved for the unfolded protein, but become redshifted and smooth for the native-like structures of ubiquitin. This spectroscopic change results from the H-bonding of the hydroxyl of Tyr to the amide group of Glu-51 in the compact structures; the minimum length of this bond was estimated to be ∼1.7 Å. IR spectroscopy reflects the global structural change by observing redshifts of free NH/OH-stretch vibrational transitions. Evaporative cooling of microhydrated complexes of ubiquitin keeps the protein chilly during ionization, enabling native-like conformers with up to eight protons to survive in the gas phase.
Collapse
Affiliation(s)
- Andrei Zviagin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Vladimir Kopysov
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Natalia S Nagornova
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Sherman SL, Nickson KA, Garand E. Comment on "Microhydration of Biomolecules: Revealing the Native Structures by Cold Ion IR Spectroscopy". J Phys Chem Lett 2022; 13:2046-2050. [PMID: 35236072 DOI: 10.1021/acs.jpclett.1c02211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This Viewpoint presents a re-examination of the conclusions of a study reported in The Journal of Physical Chemistry Letters (Saparbaev, et al. 2021, 12, 907) that compared the structure of microsolvated ions formed by electrospray ionization to those formed in the gas-phase via a previously published cryogenic ion trap approach. We conducted additional experiments that clearly show that most of the observed differences in the IR spectra can be accounted for by considering the different spectroscopic action schemes used to obtain them. In particular, the presence of the D2-tag induces shifts in some of the N-H and O-H peaks which need to be carefully considered before comparing spectra. Once these spectral effects are taken into account, we show that both clustering approaches yield similar cluster structures for the small GlyH+(H2O)n species. Using unimolecular reaction rate theory, we also show that for the small complexes considered here, only the gas-phase equilibrium distribution of conformers should be expected in both experimental approaches. In addition, the barrier heights necessary to kinetically trap high-energy conformers at 298 K is explored using a series of model polyalanine chains.
Collapse
Affiliation(s)
- Summer L Sherman
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kathleen A Nickson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Saparbaev E, Yamaletdinov R, Boyarkin OV. Identification of Isomeric Lipids by UV Spectroscopy of Noncovalent Complexes with Aromatic Molecules. Anal Chem 2021; 93:12822-12826. [PMID: 34516082 DOI: 10.1021/acs.analchem.1c02866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tremendous structural and isomeric diversity of lipids enables a wide range of their functions in nature but makes the identification of these biomolecules challenging. We distinguish and quantify isomeric lipids using cold ion UV fragmentation spectroscopy of their noncovalent complexes with aromatic amino acids and dipeptides. On the basis of structural simulations, specific isomer-sensitive aromatic "sensors" have been preselected for lipids of each studied class. Tyrosine appeared to be a good "sensor" to distinguish steroids and prostaglandins, which are rich in functional groups, while diphenylalanine is a better choice for sensing largely hydrophobic phospholipids. With this sensor, the relative concentrations of two isomeric glycerophospholipids mixed in solution have been determined with 3.3% accuracy, which should degrade only to 3.7% for a 14 s express measurement.
Collapse
Affiliation(s)
- Erik Saparbaev
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ruslan Yamaletdinov
- Nikolaev Institute of Inorganic Chemistry, Novosibirsk 630090, Russian Federation
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|