1
|
Fan J, Liu H, Wang Y, Xie Z, Lin Z, Pang K. Hydrostatic pressure effect on excited state properties of room temperature phosphorescence molecules: A QM/MM study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124626. [PMID: 38865890 DOI: 10.1016/j.saa.2024.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Stimulus-responsive organic room temperature phosphorescence (RTP) materials exhibit variations in their luminescent characteristics (lifetime and efficiency) upon exposure to external stimuli, including force, heat, light and acid-base conditions, the development of stimulus-responsive RTP molecules becomes imperative. However, the inner responsive mechanism is unclear, theoretical investigations to reveal the relationship among hydrostatic pressures, molecular structures and photophysical properties are highly desired. Herein, taking the Se-containing RTP molecule (SeAN) as a model, based on the dispersion corrected density functional theory (DFT-D), the combined quantum mechanics and molecular dynamics (QM/MM) method and thermal vibration correlation function (TVCF) theory, the influences of hydrostatic pressure on molecular structures, transition properties as well as lifetimes and efficiencies of RTP molecule are theoretically studied. Results show that extended lifetime and enhanced efficiency are observed at 2 Gpa compared with molecule at normal pressure, and this is related with the small reorganization energy and large oscillator strength. Moreover, due to the small energy gap (0.34 eV) and remarkable spin-orbit coupling (SOC) constant (8.56 cm-1) between first singlet excited state and triplet state, fast intersystem crossing (ISC) process is determined for molecule at 6 Gpa. Furthermore, the intermolecular interactions are visualized using independent gradient model based on Hirshfeld partition (IGMH) and the changes of molecular packing modes, SOC values, lifetimes and efficiencies with pressures are detected. These results reveal the relationship between molecular structures and RTP properties. Our work provides theoretical insights into the hydrostatic pressure response mechanism and could promote the development new efficient stimulus-responsive molecules.
Collapse
Affiliation(s)
- Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yan Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhen Xie
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zongwei Lin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Kunwei Pang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
2
|
Liu R, Qi Y, Zhao S, Han S, Cui Y, Song Y, Wang CK, Li Z, Cai L. Minimizing Efficiency Roll-Off in Organic Emitters via Enhancing Radiative Process and Reducing Binding Energy: A Theory Insight. J Phys Chem A 2024. [PMID: 39480898 DOI: 10.1021/acs.jpca.4c04754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Organic solid-state lasers have received increasing attention due to their great potential for realizing organic continuous-wave or electrically driven lasers. Moreover, they exhibit significant promise for optoelectronic devices due to their chemically tunable optoelectronic properties and cost-effective self-assembly traits. Recently, a great progress has been made in organic solid-state lasers via spatially separated charge injection and lasing. However, making directly electrically driven organic semiconductor lasers is very challenging. It is difficult because of a number of excitonic losses caused by the spin-forbidden nature as well as serious efficiency roll-off at a high current density. Here, a multifunction gain material, functioning both as a thermally activated delayed fluorescence (TADF) emitter with exceptional optical gain and as a source of phosphorescence, was theoretically investigated. The new molecule we designed exhibits a reduction of triplet accumulation through an effective exciton radiative process (5-fold boost in figure of merit) and significantly decreased exciton binding energy (dipole moment from 5.77 to 14.03 D), which benefit amplified spontaneous emission and lasing emission. Our work provides theoretical insights into organic solid-state lasers and may contribute to the development of new and efficient laser-gaining molecules.
Collapse
Affiliation(s)
- Rui Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yaqi Qi
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Shaoqiao Zhao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Shulin Han
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yachen Cui
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zongliang Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
Zhao ZK, He TF, Gao Q, Ren AM, Wu TS, Guo JF, Chu HY, Su ZM, Li H, Zou LY. Theoretical Investigation and Molecular Design: A Series of Tripod-Type Cu(I) Blue Light Thermally Activated Delayed Fluorescence Materials. Inorg Chem 2024. [PMID: 39231304 DOI: 10.1021/acs.inorgchem.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The photophysical properties and luminescent mechanism of a series of tripod-type Cu(I) complexes in solution and solids were comprehensively investigated through theoretical simulations. From a microscopic perspective, the experimental phenomenon is explained: (1) The intrinsic reason for the quenching of complex 1 in solution was attributed to the significant nonradiative transition caused by structural deformation; (2) In the solid, the reduced ΔEST for complex 2 effectively facilitate reverse intersystem crossing (RISC) and improves its luminescence efficiency; (3) The enhanced performance of complex 3 in solution is attributed to that its stronger steric hindrance is advantageous to decrease not only the ΔEST but also the reorganization energy through intramolecular weak interactions. Based on complex 3, the tert-butyl substituted isomeric complex 4 was designed. Complex 4 further amplifies the advantages of 3 to further promote the RISC to make full use of excitons. Meanwhile, it has an emission wavelength of 462.6 nm, which makes it an excellent candidate for high-efficiency deep-blue TADF materials. This study provides valuable information for obtaining efficient blue phosphorescence and TADF dual-channel luminescent materials.
Collapse
Affiliation(s)
- Zi-Kang Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Teng-Fei He
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Qiang Gao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Tong-Shun Wu
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Hui-Ying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Lu-Yi Zou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
4
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Liu S, Liu S, Gao Y, Lin L, Wang CK, Fan J, Song Y. Modulation of luminescence properties of circularly polarized thermally activated delayed fluorescence molecules with axial chirality by donor engineering. Phys Chem Chem Phys 2024; 26:9931-9939. [PMID: 38482988 DOI: 10.1039/d4cp00341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.
Collapse
Affiliation(s)
- Shulei Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Songsong Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yang Gao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
6
|
Lv X, Song J, Fu X, Guo S, Gu J, Meng L, Lu CZ. Enhancing Reverse Intersystem Crossing in Triptycene-TADF Emitters: Theoretical Insights into Reorganization Energy and Heavy Atom Effects. J Phys Chem A 2024; 128:1611-1619. [PMID: 38382059 DOI: 10.1021/acs.jpca.3c08107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters based on the triptycene skeleton demonstrate exceptional performance, superior stability, and low efficiency roll-off. Understanding the interplay between the luminescent properties of triptycene-TADF molecules and their assembly environments, along with their excited-state characteristics, necessitates a comprehensive theoretical exploration. Herein, we predict the photophysical properties of triptycene-TADF molecules in a thin film environment using the quantum mechanics/molecular mechanics method and quantify their substantial dependency on the heavy atom effects and reorganization energies using the Marcus-Levich theory. Our calculated photophysical properties for two recently reported molecules closely align with experimental values. We design three novel triptycene-TADF molecules by incorporating chalcogen elements (O, S, and Se) to modify the acceptor units. These newly designed molecules exhibit reduced reorganization energies and enhanced reverse intersystem crossing (RISC) rates. The heavy atom effect amplifies spin-orbit coupling, thereby facilitating the RISC process, particularly at a remarkably high rate of ∼109 s-1.
Collapse
Affiliation(s)
- Xin Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, PR China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Jinhui Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, PR China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Xifeng Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, PR China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Sai Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, PR China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Junjing Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lingyi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, PR China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, PR China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
7
|
Zhao J, Liu H, Fan J, Mu Q. A molecular descriptor of a shallow potential energy surface for the ground state to achieve narrowband thermally activated delayed fluorescence emission. Phys Chem Chem Phys 2024; 26:5156-5168. [PMID: 38260957 DOI: 10.1039/d3cp05875a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Narrowband thermally activated delayed fluorescence (TADF) molecules have extensive applications in optoelectronics, biomedicine, and energy. The full-width at half-maximum (FWHM) holds significant importance in assessing the luminescence efficiency and color purity of TADF molecules. The goal is to achieve efficient and stable TADF emissions by regulating and optimizing the FWHM. However, a bridge from the basic physical parameters (such as geometric structure and reorganization energy) to the macroscopic properties (delayed fluorescence, efficiency, and color purity) is needed and it is highly necessary and urgent to explore the internal mechanisms that influence FWHM. Herein, first-principles calculations coupled with the thermal vibration correlation function (TVCF) theory were performed to study the energy consumption processes of the excited states for the three TADF molecules (2,3-POA, 2,3-DPA, and 2,3-CZ) with different donors; inner physical parameters affecting the FWHM were detected. By analyzing the basic geometric and electronic structures as well as the transition properties and reorganization energies, three main findings in modulating FWHM were obtained, namely a large local excitation (LE) proportion in the first singlet excited state is advantageous in reducing FWHM, a donor group with weak electron-donating ability is beneficial for achieving narrowband emission, and small reorganization energies for the ground state are favorable for reducing FWHM. Thus, wise molecular design strategies to achieve efficient narrowband TADF emission are theoretically proven and proposed. We hope that these results will promote an in-depth understanding of FWHM and accelerate the development of high color purity TADF emitters.
Collapse
Affiliation(s)
- Jiaqiang Zhao
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China.
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Qingfang Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
8
|
Song XF, Peng LY, Chen WK, Gao YJ, Cui G. Theoretical studies on thermally activated delayed fluorescence of "carbene-metal-amide" Cu and Au complexes: geometric structures, excitation characters, and mechanisms. Phys Chem Chem Phys 2023; 25:29603-29613. [PMID: 37877743 DOI: 10.1039/d3cp03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, i.e., cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism. It is found that the coplanar or perpendicular conformations are coexistent in the ground state (S0), the lowest excited singlet state (S1), and the triplet state (T1). Both the coplanar and perpendicular S1 and T1 states have similar ligand-to-ligand charge transfer (LLCT) character between CAAC and Cz, and some charge-transfer character between metal atoms and ligands, which is beneficial to minimize the singlet-triplet energy gaps (ΔEST) and increase the spin-orbit coupling (SOC). An interesting three-state (S0, S1, T1) model involving two regions (coplanar and perpendicular) is proposed to rationalize the experimental TADF phenomena in the CMA complexes. In addition to the coplanar ones, the perpendicular S1 and T1 states also play a role in promoting the repopulation of the coplanar S1 exciton, which is a primary source for the delayed fluorescence.
Collapse
Affiliation(s)
- Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yuan-Jun Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
9
|
Wang Y, Tian Y, Gao Y, Guo Z, Xue Z, Han Y, Yang W, Ma X. Resolving the Photophysics of Nitrogen-Embedded Multiple Resonance Emitters: Origin of Color Purity and Emitting Efficiency. J Phys Chem Lett 2023; 14:9665-9676. [PMID: 37870971 DOI: 10.1021/acs.jpclett.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The emerging nitrogen-embedded multiple resonance (MR) emitters with an indolo[3,2,1-jk] carbazole (ICz) unit have exhibited promising performance for high-resolution organic light-emitting diode (OLED) devices, while the underlying photophysics has been rarely reported. In this work, the optical spectra, color purity, and emitting efficiency of ICz-based MR emitters were investigated by using electronic structure and thermal vibration correlation function (TVCF) calculations. Unlike B-N MR emitters, the high color purity of investigated ICz-based MR emitters was mainly contributed by considerable structural rigidity, which also greatly affects the radiative decay rate and fluorescence quantum yield of the S1 state. For the majority of investigated emitters, potential reverse intersystem crossing (RISC) channels (T1 → S1 and T2 → S1) are limited by thermally inaccessible ΔEST* or insufficient spin-orbital coupling (SOC), which can be distinguished by the calculated temperature-dependent RISC rate pattern. We provided a systematic photophysical picture for ICz-based MR emitters that might be interesting for the OLED design and application community.
Collapse
Affiliation(s)
- Yaxin Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yiran Tian
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Zheng Xue
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
10
|
Ying A, Gong S. A Rising Star: Luminescent Carbene-Metal-Amide Complexes. Chemistry 2023; 29:e202301885. [PMID: 37431981 DOI: 10.1002/chem.202301885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Coinage metal (gold, silver, and copper) complexes are attractive candidates to substitute the widely studied noble metal complexes, such as, iridium(III) and platinum(II), as luminescent materials in organic light-emitting diodes (OLEDs). However, the development of coinage metal complexes exhibiting high emission quantum yields and short exciton lifetimes is still a formidable challenge. In the past few years, coinage metal complexes featuring a carbene-metal-amide (CMA) motif have emerged as a new class of luminescent materials in OLEDs. Thanks to the coinage metal-bridged linear geometry, coplanar conformation, and the formation of excited states with dominant ligand-to-ligand charge transfer character and reduced metal d-orbital participation, most CMA complexes have high radiative rates via thermally activated delayed fluorescence. Currently, the family of CMA complexes have rapidly evolved and remarkable progresses in CMA-based OLEDs have been made. Here, a Concept article on CMA complexes is presented, with a focus on molecular design principles, the correlation between molecular structure/conformation and optoelectronic properties, as well as OLED performance. The future prospects of CMA complexes are also discussed.
Collapse
Affiliation(s)
- Ao Ying
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
11
|
Zhang B, Shuai Z. Quantum Dynamical Approach to Predicting the Optical Pumping Threshold for Lasing in Organic Materials. J Phys Chem Lett 2023; 14:8590-8598. [PMID: 37726254 DOI: 10.1021/acs.jpclett.3c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The quantum dynamic (QD) study of organic lasing (OL) is a challenging issue in organic optoelectronics. Previously, the phenomenological method has achieved success in describing experimental observation. However, it cannot directly bridge the laser threshold (LT) with microscopic parameters, which is the advantage of the QD method. In this paper, we propose a microscopic OL model and apply time-dependent wave packet diffusion to reveal the microscopic QD process of optically pumped lasing. LT is obtained from the onset of output as a function of optical input pumping. We predict that the LT has an optimal value as a function of the cavity volume and depends linearly on the intracavity photon leakage rate. The calculated structure-property relationships between molecular parameters and the LT are in qualitative agreement with the experimental results, confirming the reliability of our approach. This work is beneficial for understanding the OL mechanism and optimizing the design of organic laser materials.
Collapse
Affiliation(s)
- Bin Zhang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
12
|
Zhang YL, He TF, Zhao ZK, Shen A, Gao Q, Ren AM, Su ZM, Li H, Chu HY, Zou LY. Self-Consistent Quantum Mechanics/Embedded Charge Study on Aggregation-Enhanced Delayed Fluorescence of Cu(I) Complexes: Luminescence Mechanism and Molecular Design Strategy. Inorg Chem 2023; 62:7753-7763. [PMID: 37154416 DOI: 10.1021/acs.inorgchem.3c00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To elucidate the luminescence mechanism of highly efficient blue Cu(N^N)(POP)+-type thermally activated delayed fluorescence (TADF) materials, we have selected Cu(pytfmpz)(POP)+ (1) and Cu(pympz)(POP)+ (2) as targets to investigate the photophysical properties in both solution and solid phases. The self-consistent electrostatic potential (ESP) embedded charge within the quantum mechanics/molecular mechanics (QM/MM) method demonstrates a greater advantage over the charge equilibrium (QEQ) in accurately calculating atomic charges and reasonably describing the polarization effect, ultimately resulting in a favorable consistency between simulation and experimental measurements. After systematic and quantitative simulation, it has been found that complex 2, with an electron-donating group of -CH3, exhibits a much more blue-shifted spectrum and a significantly enhanced efficiency in comparison to complex 1 with -CF3. This is due to the widened HOMO-LUMO gap as well as the narrowed energy gap between the lowest singlet and triplet excited states (ΔEST), respectively. Then, the designed complex 3 is introduced with a stronger electron donor and larger tert-butyl group, which plays a key role in simultaneously suppressing the structural distortion and reducing the ΔEST. This leads to a faster reverse intersystem crossing process than that of the two experimental complexes in solution, turning out to be a new deep-blue-emitting material with excellent TADF performance.
Collapse
Affiliation(s)
- Yun-Li Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Teng-Fei He
- College of Chemistry, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300350 Tianjin, China
| | - Zi-Kang Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ao Shen
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Qiang Gao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui-Ying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Lu-Yi Zou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
13
|
Mu Q, Zhang K, Liu H, Xie Z, Song Y, Wang CK, Lin L, Xu Y, Fan J. Role of halogen effects and cyclic imide groups in constructing red and near-infrared room temperature phosphorescence molecules: theoretical perspective and molecular design. Phys Chem Chem Phys 2023; 25:6659-6673. [PMID: 36794480 DOI: 10.1039/d2cp05743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Organic room temperature phosphorescence (RTP) has been widely investigated to realize long-lifetime luminescent materials and improvement in their efficiency is a key focus of research, especially for red and near-infrared (NIR) RTP molecules. However, due to the lack of systematic studies on the relationship between basic molecular structures and luminescence properties, both the species and amounts of red and NIR RTP molecules remain far from meeting the requirements of practical applications. Herein, based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations, the photophysical properties of seven red and NIR RTP molecules in tetrahydrofuran (THF) and in the solid phase were theoretically studied. The excited state dynamic processes were investigated by calculating the intersystem crossing and reverse intersystem crossing rates considering the surrounding environmental effects in THF and in the solid phase using a polarizable continuum model (PCM) and quantum mechanics and molecular mechanics (QM/MM) method, respectively. The basic geometric and electronic data were obtained, Huang-Rhys factors and reorganization energies were analyzed, and natural atomic orbital was used to calculate the orbital information of the excited states. Simultaneously, the electrostatic potential distribution on molecular surfaces was analyzed. Further, intermolecular interactions were visualized using the molecular planarity binding independent gradient model based on Hirshfeld partition (IGMH). The results showed that the unique molecular configuration has the potential to achieve red and NIR RTP emission. Not only did the substitutions of halogen and sulfur make the emission wavelength red-shifted, but also linking the two cyclic imide groups could further make the emission wavelength longer. Moreover, we found that the emission characteristics of molecules in THF had a similar trend as in the solid phase. Based on this point, two new RTP molecules with long emission wavelengths (645 nm and 816 nm) are theoretically proposed and their photophysical properties are fully analyzed. Our investigation provides a wise strategy to design efficient and long-emission RTP molecules with an unconventional luminescence group.
Collapse
Affiliation(s)
- Qingfang Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Zhen Xie
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuanyuan Xu
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China. .,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China
| |
Collapse
|
14
|
Ding X, Jin JL, Yang JF, Ou LH, Gao Y, Wu Y. Theoretical studies on spiro[acridine-fluorene]-based emitters with efficient thermally activated delayed fluorescence. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
15
|
Amouri H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem Rev 2023; 123:230-270. [PMID: 36315851 DOI: 10.1021/acs.chemrev.2c00206] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The employment of N-heterocyclic carbenes (NHCs) to design luminescent metal compounds has been the focus of recent intense investigations because of the strong σ-donor properties, which bring stability to the whole system and tend to push the d-d dark states so high in energy that they are rendered thermally inaccessible, thereby generating highly emissive complexes for useful applications such as organic light-emitting diodes (OLEDs), or featuring chiroptical properties, a field that is still in its infancy. Among the NHC complexes, those containing organic chromophores such as naphthalimide, pyrene, and carbazole exhibit rich emission behavior and thus have attracted extensive interest in the past five years, especially carbene coinage metal complexes with carbazolate ligands. In this review, the design strategies of NHC-based luminescent platinum and iridium complexes with large spin-orbit-coupling (SOC) are described first. Subsequent paragraphs illustrate the recent advances of luminescent coinage metal complexes with nucleophilic- and electrophilic-based carbenes based on silver, gold, and copper metal complexes that have the ability to display rich excited state emissions in particular via thermally activated delayed fluorescence (TADF). The luminescence mechanism and excited state dynamics are also described. We then summarize the advance of NHC-metal complexes in the aforementioned fields in recent years. Finally, we propose the development trend of this fast-growing field of luminescent NHC-metal complexes.
Collapse
Affiliation(s)
- Hani Amouri
- CNRS, IPCM (UMR 8232), Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, Cedex 05, France
| |
Collapse
|
16
|
Liang Y, Xu M, Chi Y, Liang T, Jiang X, Wang J, Pan Y, Yang B. Theoretical study of the thermally activated delayed fluorescence (TADF) combined with aggregation-induced emission (AIE) molecular solid-state effect on the luminescence mechanism. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Zhang B, Shuai Z. Detuning Effects on the Reverse Intersystem Crossing from Triplet Exciton to Lower Polariton. J Phys Chem Lett 2022; 13:9279-9286. [PMID: 36173356 DOI: 10.1021/acs.jpclett.2c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The lower polariton (LP) can reduce the energy barrier of the reverse intersystem crossing (rISC) process from T1 to harvest triplet energy for fluorescence. Based on a Tavis-Cummings model including both singlet and triplet excitons, both coupled with quantized photons, we derive here a comprehensive rISC rate formalism. We found that the latter consists of three contributions: the one originated from spin-orbit coupling as first obtained by Martinez-Martinez et al. ( J. Chem. Phys. 2019, 151, 054106), the one from light-matter coupling of Ou et al. ( J. Am. Chem. Soc. 2021, 143, 17786), and the cross-term first reported here. We apply the formalism to investigate the experimentally observed barrier-free rISC (BFrISC) process in cavity devices with DABNA-2 molecular thin film. We found it can be attributed to the detuning effect. The rISC rates can be increased by orders of magnitude through changing the detuning energy to realize the BFrISC process. In addition, the BFrISC rates exhibit a maximum as a function of the incident angle and the doping concentration. The formalism provides a solid ground for molecular design toward highly efficient cavity-promoted light-emitting materials.
Collapse
Affiliation(s)
- Bin Zhang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P R China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 517128, P R China
| |
Collapse
|
18
|
Wei Z, Jiang S, Qi F, Lv X, Song J, Gu J, Meng L, Lu C. Predicting and Designing Thermally Activated Delayed Fluorescence Molecules with Balanced Δ
E
ST
and Transition Dipole Moment. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhuangzhuang Wei
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian 350007 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen 361021 P. R. China
| | - Shanshan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Department of Material Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen 361021 P. R. China
| | - Fangfang Qi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian 350007 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen 361021 P. R. China
| | - Xin Lv
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen 361021 P. R. China
| | - Jinhui Song
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen 361021 P. R. China
| | - Junjing Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Lingyi Meng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian 350007 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen 361021 P. R. China
| | - Can‐Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian 350007 P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen 361021 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
19
|
Hariharan M, Scholes GD. Virtual Issue on Triplet Excitons. J Phys Chem Lett 2022; 13:8365-8368. [PMID: 36073086 DOI: 10.1021/acs.jpclett.2c02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
Lin S, Ou Q, Peng Q, Shuai Z. Computational studies on the excited state decay rates in aggregates of two‐coordinate
Cu (I)
complexes:
Thermally Activated Delayed Fluorescence
and
Aggregation Induced Emis. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shiyun Lin
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing P. R. China
| | - Qi Ou
- AI for Science Institute Beijing P. R. China
| | - Qian Peng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing P. R. China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing P. R. China
- School of Science and Engineering The Chinese University of Hong Kong Shenzhen P. R. China
| |
Collapse
|
21
|
Wang Y, Ren J, Li W, Shuai Z. Hybrid Quantum-Classical Boson Sampling Algorithm for Molecular Vibrationally Resolved Electronic Spectroscopy with Duschinsky Rotation and Anharmonicity. J Phys Chem Lett 2022; 13:6391-6399. [PMID: 35802770 DOI: 10.1021/acs.jpclett.2c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using a photonic quantum computer for boson sampling has demonstrated a tremendous advantage over classical supercomputers. It is highly desirable to develop boson sampling algorithms for realistic scientific problems. In this work, we propose a hybrid quantum-classical sampling (HQCS) algorithm to calculate the optical spectrum for complex molecules considering Duschinsky rotation effects and anharmonicity. The classical sum-over-states method for this problem has a computational complexity that exponentially increases with system size. The HQCS algorithm creates an intermediate harmonic potential energy surface (PES) to bridge the initial and final PESs. The magnitude and sign of the overlap between the initial and the intermediate state are estimated by boson sampling and classical algorithms, respectively. The overlap between the intermediate and the final state is efficiently evaluated by classical algorithms. The feasibility of HQCS is demonstrated in calculations of the emission spectrum of a Morse model as well as the pyridine molecule.
Collapse
Affiliation(s)
- Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
22
|
Sun XW, Peng LY, Gao YJ, Fang Q, Cui G. Thermally Activated Delayed Fluorescence of a Pyromellitic Diimide Derivative in the Film Environment Investigated by Combined QM/MM and MS-CASPT2 Methods. J Phys Chem A 2022; 126:4176-4184. [PMID: 35737507 DOI: 10.1021/acs.jpca.2c02145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arylene diimide compounds exhibit thermally activated delayed fluorescence (TADF), but its mechanism remains elusive. Herein we studied the TADF mechanism of a carbazole-substituted pyromellitic diimide derivative (CzPhPmDI) in poly(methyl methacrylate) (PMMA) film by using DFT, TD-DFT, and MS-CASPT2 methods within the QM/MM framework. We found that the TADF mechanism involves three electronic states (i.e., S0, S1, and T1), but the T2 state is not involved because its energy is higher than the S1 state by 6.9 kcal/mol. By contrast, the T1 state is only 3.2 kcal/mol lower than the S1 state and such small energy difference benefits the reverse intersystem crossing (rISC) process from T1 to S1 thereto TADF. This point is seconded by relevant radiative and nonradiative rates calculated. At room temperature, the ISC rate from S1 to T1 is calculated to be 6.1 × 106 s-1, which is larger than the fluorescence emission rate, 2.2 × 105 s-1; thus, the dominant S1 population converts to the T1 state. However, in the T1 state, the rISC process (1.8 × 104 s-1) becomes the most important channel because of the negligible phosphorescence emission rate (3.5 × 10-2 s-1). So, the T1 population is still converted back to the S1 state to fluoresce enabling TADF. Unfortunately, the rISC process is blocked in low temperature. Besides, we found that relevant Huang-Rhys factors have dominant contribution from low-frequency vibrational motion related to the torsional motion of functional groups. These gained insights could provide useful information for the design of organic TADF materials with excellent luminescence efficiency.
Collapse
Affiliation(s)
- Xin-Wei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuan-Jun Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
23
|
Sun X, Peng L, Gao Y, Ye J, Cui G. Theoretical studies on
excited‐state
properties and luminescence mechanism of a
Carbene–Metal–Amide
Au(I) complex with thermally activated delayed fluorescence. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin‐Wei Sun
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University Beijing PR China
| | - Ling‐Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University Beijing PR China
| | - Yuan‐Jun Gao
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University Beijing PR China
| | - Jin‐Ting Ye
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University Beijing PR China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University Beijing PR China
| |
Collapse
|
24
|
Yang JG, Song XF, Cheng G, Wu S, Feng X, Cui G, To WP, Chang X, Chen Y, Che CM, Yang C, Li K. Conformational Engineering of Two-Coordinate Gold(I) Complexes: Regulation of Excited-State Dynamics for Efficient Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13539-13549. [PMID: 35286066 DOI: 10.1021/acsami.2c01776] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbene-Au-amide (CMA) type complexes, in which the amide and carbene ligands act as an electron donor (D) and acceptor (A), respectively, can exhibit strong delayed fluorescence (DF) from a ligand to ligand charge transfer (LLCT) excited state. Although the coplanar donor-acceptor (D-A) conformation has been suggested to be a crucial factor favoring radiative decay of the charge-transfer excited state, the geometric structural factor underpinning the excited-state mechanism of CMA complexes remains an open question. We herein develop a new class of carbene-Au-carbazolate complexes by introducing large aromatic substituents onto the carbazolate ligand, the presence of which are conceived to restrict the rotation of the Au-N bond and thus confine a twisted D-A conformation in both ground and excited states. A highly twisted D-A orientation is found for the complexes in their crystal structures. Photophysical studies reveal that the twisted conformation induces a decrease in the gap (ΔEST) between the lowest singlet excited state (S1) and the triplet manifold (T1) and thus a faster reverse intersystem crossing (RISC) from T1 to S1 at the expense of oscillator strength for an S1 radiative transition. In comparison with the coplanar analogue, the twisted complexes exhibit comparable or improved DF with quantum yields of up to 94% and short emission lifetimes down to sub-microseconds. The tuning of excited-state dynamics has been well interpreted by density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, which unveil much faster RISC rates for twisted complexes. Solution-processed organic light-emitting diodes (OLEDs) based on the new CMA complexes show promising performances with almost negligible efficiency rolloff at a brightness of 1000 cd m-2. This work implies that neither a coplanar ground-state D-A conformation nor a dynamic rotation of the M-N bond is the key to the realization of efficient DF for CMA complexes.
Collapse
Affiliation(s)
- Jian-Gong Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Siping Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xingyu Feng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Kai Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
25
|
Song XF, Li ZW, Chen WK, Gao YJ, Cui G. Thermally Activated Delayed Fluorescence Mechanism of a Bicyclic "Carbene-Metal-Amide" Copper Compound: DFT/MRCI Studies and Roles of Excited-State Structure Relaxation. Inorg Chem 2022; 61:7673-7681. [PMID: 35200011 DOI: 10.1021/acs.inorgchem.1c03603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein we investigated the luminescence mechanism of one "carbene-metal-amide" copper compound with thermally activated delayed fluorescence (TADF) using density functional theory (DFT)/multireference configuration interaction, DFT, and time-dependent DFT methods with the polarizable continuum model. The experimentally observed low-energy absorption and emission peaks are assigned to the S1 state, which exhibits clear interligand and partial ligand-to-metal charge-transfer character. Moreover, it was found that a three-state (S0, S1, and T1) model is sufficient to describe the TADF mechanism, and the T2 state should play a negligible role. The calculated S1-T1 energy gap of 0.10 eV and proper spin-orbit couplings facilitate the reverse intersystem crossing (rISC) from T1 to S1. At 298 K, the rISC rate of T1 → S1 (∼106 s-1) is more than 3 orders of magnitude larger than the T1 phosphorescence rate (∼103 s-1), thereby enabling TADF. However, it disappears at 77 K because of a very slow rISC rate (∼101 s-1). The calculated TADF rate, lifetime, and quantum yield agree very well with the experimental data. Methodologically, the present work shows that only considering excited-state information at the Franck-Condon point is insufficient for certain emitting systems and including excited-state structure relaxation is important.
Collapse
Affiliation(s)
- Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuan-Jun Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
26
|
Ruduss A, Turovska B, Belyakov S, Stucere KA, Vembris A, Traskovskis K. Carbene-Metal Complexes As Molecular Scaffolds for Construction of through-Space Thermally Activated Delayed Fluorescence Emitters. Inorg Chem 2022; 61:2174-2185. [PMID: 35038860 DOI: 10.1021/acs.inorgchem.1c03371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The through-space charge transfer (CT) process is observed in Cu(I) carbene-metal-amide complexes, where conventional imidazole or imidazoline N-heterocyclic (NHC) carbene fragments act as inert linkers and CT proceeds between a metal-bound carbazole donor and a distantly situated carbene-bound phenylsulfonyl acceptor. The resulting electron transfer gives a rise to efficient thermally activated delayed fluorescence (TADF), characterized with high photoluminescence quantum yields (ΦPL up to 90%) and radiative rates (kr) up to 3.32 × 105 s-1. The TADF process is aided by fast reverse intersystem crossing (rISC) rates of up to 2.56 × 107 s-1. Such emitters can be considered as hybrids of two existing TADF emitter design strategies, combining low singlet-triplet energy gaps (ΔEST) met in all-organic exciplex-like emitters (0.0062-0.0075 eV) and small, but non-negligible spin-orbital coupling (SOC) provided by a Cu atom, like in TADF-active organometallic complexes.
Collapse
Affiliation(s)
- Armands Ruduss
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048, Riga, Latvia
| | - Baiba Turovska
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Kitija A Stucere
- Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063, Riga, Latvia
| | - Aivars Vembris
- Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063, Riga, Latvia
| | - Kaspars Traskovskis
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048, Riga, Latvia
| |
Collapse
|
27
|
Wei Z, Zuo T, Jiang S, Qi F, Yang M, Meng L, Lu CZ. Theoretically elucidating high photoluminescence performance of dimethylacridan-based blue-color thermally activated delayed fluorescent materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj05251a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on first-principles methods, we comprehensively quantify the luminous quantum efficiencies and related photophysical process rates of dimethylacridan-based blue-color TADF emitters.
Collapse
Affiliation(s)
- Zhuangzhuang Wei
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Tao Zuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shanshan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Fangfang Qi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Mingxue Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Lingyi Meng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Can-Zhong Lu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Wei Z, Lin S, Zuo T, Li Q, Jiang S, Qi F, Yang M, Gu J, Meng L, Lu CZ. Thermally activated delayed fluorescence materials with aggregation-induced emission properties: a QM/MM study. Phys Chem Chem Phys 2021; 23:25789-25796. [PMID: 34766607 DOI: 10.1039/d1cp04190h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic molecules with thermally activated delayed fluorescence (TADF) and aggregation induced emission (AIE) properties have attracted increasing research interest due to their great potential applications in organic light emitting diodes (OLEDs), especially for those with multicolor mechanochromic luminescence (MCL) features. Theoretical research on the luminescence characteristics of organic TADF emitters based on the aggregation states is highly desired to quantify the relationship between the TADF properties and aggregation states. In this work, we study the 4,4'-(6-(9,9-dimethylacridine-10(9H)-yl)quinoline-2,3-dibenzonitrile (DMAC-CNQ) emitter with TADF and AIE properties, and calculate the photophysical properties in gas, solid and amorphous states by using the quantum mechanics and molecular mechanics (QM/MM) method. Our simulations demonstrate that the aggregation states enhance obviously the reverse intersystem crossing rates and transition dipole moments of the DMAC-CNQ emitter, and suppress the non-radiative rates from the lowest excited singlet state (S1) to ground state (S0). Specifically, the molecular stacking of DMAC-CNQ in solid phases can mainly restrict the geometric torsion of the DMAC moiety for decreasing non-radiative decay rates, and the torsion of the CNQ moiety for increasing the reverse intersystem crossing rates. As a result, the calculated fluorescence efficiencies of the DMAC-CNQ emitter in the crystal and amorphous states are 67% and 26% respectively, and in good agreement with the experimental results.
Collapse
Affiliation(s)
- Zhuangzhuang Wei
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shiyun Lin
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Tao Zuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Qikai Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shanshan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Fangfang Qi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Mingxue Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Junjing Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lingyi Meng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Ou Q, Shao Y, Shuai Z. Enhanced Reverse Intersystem Crossing Promoted by Triplet Exciton-Photon Coupling. J Am Chem Soc 2021; 143:17786-17792. [PMID: 34644062 DOI: 10.1021/jacs.1c08881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polaritons are hybrid light-matter states formed via strong coupling between excitons and photons inside a microcavity, leading to upper and lower polariton (LP) bands splitting from the exciton. The LP has been applied to reduce the energy barrier of the reverse intersystem crossing (rISC) process from T1, harvesting triplet energy for fluorescence through thermally activated delayed fluorescence. The spin-orbit coupling between T1 and the excitonic part of the LP was considered as the origin for such an rISC transition. Here we propose a mechanism, namely, rISC promoted by the light-matter coupling (LMC) between T1 and the photonic part of LP, which is originated from the ISC-induced transition dipole moment of T1. This mechanism was excluded in previous studies. Our calculations demonstrate that the experimentally observed enhancement to the rISC process of the erythrosine B molecule can be effectively promoted by the LMC between T1 and a photon. The proposed mechanism would substantially broaden the scope of the molecular design toward highly efficient cavity-promoted light-emitting materials and immediately benefit the illumination of related experimental phenomena.
Collapse
Affiliation(s)
- Qi Ou
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Zhao R, Hettich CP, Chen X, Gao J. Minimal-active-space multistate density functional theory for excitation energy involving local and charge transfer states. NPJ COMPUTATIONAL MATERIALS 2021; 7:148. [PMID: 36713117 PMCID: PMC9881008 DOI: 10.1038/s41524-021-00624-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/19/2021] [Indexed: 06/15/2023]
Abstract
Multistate density functional theory (MSDFT) employing a minimum active space (MAS) is presented to determine charge transfer (CT) and local excited states of bimolecular complexes. MSDFT is a hybrid wave function theory (WFT) and density functional theory, in which dynamic correlation is first incorporated in individual determinant configurations using a Kohn-Sham exchange-correlation functional. Then, nonorthogonal configuration-state interaction is performed to treat static correlation. Because molecular orbitals are optimized separately for each determinant by including Kohn-Sham dynamic correlation, a minimal number of configurations in the active space, essential to representing low-lying excited and CT states of interest, is sufficient to yield the adiabatic states. We found that the present MAS-MSDFT method provides a good description of covalent and CT excited states in comparison with experiments and high-level computational results. Because of the simplicity and interpretive capability through diabatic configuration weights, the method may be useful in dynamic simulations of CT and nonadiabatic processes.
Collapse
Affiliation(s)
- Ruoqi Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Christian P. Hettich
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Xin Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Beijing University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Beijing University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
31
|
Li ZW, Peng LY, Song XF, Chen WK, Gao YJ, Fang WH, Cui G. Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence in the Pd Complex: Mechanism and Dual Upconversion Channels. J Phys Chem Lett 2021; 12:5944-5950. [PMID: 34156849 DOI: 10.1021/acs.jpclett.1c01558] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Pd complex PdN3N exhibits an unusual dual emission of room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF), but the mechanism is elusive. Herein, we employed both density functional theory (DFT) and time-dependent DFT (TD-DFT) methods to explore excited-state properties of this Pd complex, which shows that the S0, S1, T1, and T2 states are involved in the luminescence. Both the S1 → T1 and S1 → T2 intersystem crossing (ISC) processes are more efficient than the S1 fluorescence and insensitive to temperature. However, the direct T1 → S1 and T2-mediated T1 → T2 → S1 reverse ISC (rISC) processes change remarkably with temperature. At 300 K, these two processes are more efficient than the T1 phosphorescence and therefore enable TADF. Importantly, the T1 → S1 rISC and T1 phosphorescence rates are comparable at 300 K, which leads to dual emissions of TADF and RTP, whereas these two channels become blocked at 100 K so that only the T1 phosphorescence is recorded experimentally.
Collapse
Affiliation(s)
- Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuan-Jun Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|