1
|
Hui D, Ye C, Cao X, Hu Y, Chen S, Yang W, Hu L, Pan G. Unraveling the Molecular Weight Dependence of High Magnetic Field to Manipulate the Semiconducting Polymer Molecular Orientation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709947 DOI: 10.1021/acsami.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The magnetic alignment of molecules, which exploits the anisotropy of diamagnetic susceptibility, provides a clean and versatile approach to the structural manipulation of semiconducting polymers. Here, the magnetic-alignment dynamics of two molecular-weight (MW) batches of a diketopyrrolopyrrole (DPP)-based copolymer (PDVT-8) were investigated. Microstructural characterizations revealed that the magnetically aligned, high-MW (Mn = 53.7 kDa) PDVT-8 film exhibited a higher degree of backbone chain alignment and film crystallinity compared with the low-MW (Mn = 17.6 kDa) PDVT-8 film grown via the same magnetic alignment method. We found that as the MW increases, the degree of preaggregation of the polymer molecules in solution significantly increases and the aggregation mode changes from H-aggregation to J-aggregation through a cooperative assembly mechanism. These events improved the responsiveness of high-MW polymer molecules to magnetic fields. Field-effect transistors based on the magnetic aligned high-MW PDVT-8 films exhibited a 6.8-fold increase in hole mobility compared to the spin-coated films, along with a mobility anisotropy ratio of 12.6. This work establishes a significant correlation among chain aggregation behavior in solution, polymer film microstructures, magnetic responsiveness, and carrier transport performance in donor-acceptor polymer systems.
Collapse
Affiliation(s)
- Di Hui
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Chun Ye
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Xian Cao
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yanna Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shichao Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wenqiang Yang
- Chemical Engineering, University of South Carolina, 301 S. Main Street, Columbia, South Carolina 29208, United States
| | - Lin Hu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guoxing Pan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
2
|
Wu Z, Yan Y, Zhao Y, Liu Y. Recent Advances in Realizing Highly Aligned Organic Semiconductors by Solution-Processing Approaches. SMALL METHODS 2022; 6:e2200752. [PMID: 35793415 DOI: 10.1002/smtd.202200752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Solution-processing approaches are widely used for controlling the aggregation structure of organic semiconductors because they are fast, efficient, and have strong practicability. Effective regulation of the aggregation structure of molecules to achieve highly ordered molecular stacking is key to realizing effective carrier transport and high-performance devices. Numerous studies have achieved highly aligned organic semiconductors using different solution-processing approaches. This article provides a detailed review of the prevalent solution-processing technologies and emerging methods developed over the past few years for the alignment of organic semiconducting materials. These technologies and methods are classified according to the processing principle. This review focuses on the principles of different experimental techniques, improvements upon the conventional methods, and state-of-the-art performance of resulting devices. In addition, a brief discussion of the characteristics and development prospects of various methods is presented.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Kukhta NA, Luscombe CK. Gaining control over conjugated polymer morphology to improve the performance of organic electronics. Chem Commun (Camb) 2022; 58:6982-6997. [PMID: 35604084 DOI: 10.1039/d2cc01430k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymers (CPs) are widely used in various domains of organic electronics. However, the performance of organic electronic devices can be variable due to the lack of precise predictive control over the polymer microstructure. While the chemical structure of CPs is important, CP microstructure also plays an important role in determining the charge-transport, optical and mechanical properties suitable for a target device. Understanding the interplay between CP microstructure and the resulting properties, as well as predicting and targeting specific polymer morphologies, would allow current comprehension of organic electronic device performance to be improved and potentially enable more facile device optimization and fabrication. In this Feature Article, we highlight the importance of investigating CP microstructure, discuss previous developments in the field, and provide an overview of the key aspects of the CP microstructure-property relationship, carried out in our group over recent years.
Collapse
Affiliation(s)
- Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195-2120, USA
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| |
Collapse
|
4
|
Memon WA, Zhang Y, Zhang J, Yan Y, Wang Y, Wei Z. Alignment of organic conjugated molecules for high-performance device applications. Macromol Rapid Commun 2022; 43:e2100931. [PMID: 35338681 DOI: 10.1002/marc.202100931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Indexed: 11/11/2022]
Abstract
High-performance organic semiconductor materials as the electroactive components of optoelectronic devices have attracted much attention and made them ideal candidates for solution-processable, large-area, and low-cost flexible electronics. Especially, organic field-effect transistors (OFETs) based on conjugated semiconductor materials have experienced stunning progress in device performance. To make these materials economically viable, comprehensive knowledge of charge transport mechanisms is required. The alignment of organic conjugated molecules in the active layer is vital to charge transport properties of devices. The present review highlights the recent progress of processing-structure-transport correlations that allow the precise and uniform alignment of organic conjugated molecules over large areas for multiple electronic applications, including OFETs, organic thermoelectric devices (OTEs), and organic phototransistors (OPTs). Different strategies for regulating crystallinity and macroscopic orientation of conjugated molecules are introduced to correlate the molecular packing, the device performance and charge transport anisotropy in multiple organic electronic devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Waqar Ali Memon
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yangjun Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuheng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
5
|
Wenderott JK, Dong BX, Green PF. Morphological design strategies to tailor out-of-plane charge transport in conjugated polymer systems for device applications. Phys Chem Chem Phys 2021; 23:27076-27102. [PMID: 34571525 DOI: 10.1039/d1cp02476k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The transport of charge carriers throughout an active conjugated polymer (CP) host, characterized by a heterogeneous morphology of locally varying degrees of order and disorder, profoundly influences the performance of CP-based electronic devices, including diodes, photovoltaics, sensors, and supercapacitors. Out-of-plane charge carrier mobilities (μout-of-plane) across the bulk of the active material host and in-plane mobilities (μin-plane) parallel to a substrate are highly sensitive to local morphological features along their migration pathways. In general, the magnitudes of μout-of-plane and μin-plane are very different, in part because these carriers experience different morphological environments along their migration pathways. Suppressing the impact of variations in the morphological order/disorder on carrier migration remains an important challenge. While much is known about μin-plane and its optimization for devices, the current challenges are associated with μout-of-plane and its optimization for device performance. Therefore, this review is devoted to strategies for improving μout-of-plane in neat CP films and the implications for more complex systems, such as D:A blends which are relevant to OPV devices. The specific strategies discussed for improving μout-of-plane include solvent/field processing methods, chemical modification, thickness confinement, chemical additives, and different post-annealing strategies, including annealing with supercritical fluids. This review leverages the most recent fundamental understanding of mechanisms of charge transport and connections to morphology, identifying robust design strategies for targeted improvements of μout-of-plane.
Collapse
Affiliation(s)
- J K Wenderott
- Department of Materials Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ban Xuan Dong
- Department of Materials Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter F Green
- Department of Materials Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401, USA.
| |
Collapse
|
6
|
Tuning the randomization of lamellar orientation in poly(3-hexylthiophene) thin films with substrate nano-curvature. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|