1
|
Yang X, Zhao H, Wen Z, Bai Y, Meng Q, Sun H, Ding X, Jiang J, Huang D, Yu WW, Liu F. On-Off Switching of Singlet Self-Trapped Exciton Emission Endows Antimony-Doped Indium Halides with Excitation-Wavelength-Dependent Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407892. [PMID: 39487640 DOI: 10.1002/smll.202407892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Excitation-wavelength-dependent (Ex-De) emitters are a fascinating category of luminescent materials whose emission properties vary with the wavelength of the light used for excitation. Antimony (Sb3+)-doped indium (In)-based metal halides are efficient light emitters; however, the peak fluorescence emission of most Sb3+-activated In-halide remains independent of the excitation wavelength. Here, the study introduces a new Sb3+-doped In-halide cluster, (BDPA)2InCl5:Sb (BDPA+ = C15H18N+, benzyldimethylphenylammonium), which demonstrates efficient Ex-De emission originating from the on-off switchable fluorescence behavior of singlet self-trapped exciton (STE) in 5-coordinate Sb3+ dopant. Interestingly, when excited within the range of 240-370 nm, photoluminescence (PL) spectra of (BDPA)2InCl5:Sb show both singlet and triplet STE emission. However, under excitation wavelengths of 370 to 420 nm, the singlet STE emission is absent, resulting in a noticeable correlated color temperature change from 1700 to 3800 K. The study provides a new approach to designing color-tunable Sb3+-based luminophores, and also presents a novel application scenario for the widely recognized Sb3+ doping strategy.
Collapse
Affiliation(s)
- Xinyu Yang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Hongyuan Zhao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Ziying Wen
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yunfei Bai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Qichao Meng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Haibo Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xihong Ding
- Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou, 233100, P. R. China
| | - Junke Jiang
- Univ Rennes, ENSCR, CNRS, ISCR-UMR 6226, Rennes Cedex, F-35000, France
| | - Dan Huang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education, Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, P. R. China
| | - Feng Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
2
|
Shamla AB, Sarma D, Kumar Das D, Anilkumar V, Bakthavatsalam R, Mahata A, Kundu J. Discerning the Structure-Photophysical Property Correlation in Zero-Dimensional Antimony(III)-Doped Indium(III) Halide Hybrids. J Phys Chem Lett 2024; 15:8224-8232. [PMID: 39102307 DOI: 10.1021/acs.jpclett.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Zero-dimensional (0D) metal halide hybrids incorporating optically emissive Sb3+ dopants have received huge research attention as a result of dopant-based visible emission for lighting and scintillation applications. Indeed, there have been a plethora of reports on Sb3+ doping of indium halide (In-X)-based 0D hybrids that show strong dopant emission with varied emission wavelengths (λem) and photoluminescence quantum yields (PLQYs). However, discerning the structure-luminescence relation in these 0D-doped hybrids remains challenging because it necessitates exquisite synthetic control on the local metal (dopant) halide geometry/site asymmetry. Demonstrated here is synthetic control that allows tuning of the local metal halide geometry of the Sb3+ dopants in 0D In-X hybrids utilizing five different organic cations. Experimental analysis of the series of Sb3+-doped In-X hybrids reveals a strong correlation between the extent of local metal halide geometry distortion and their photophysical properties (λem and PLQY). Density functional theory calculations of the doped compounds, characterizing ground- and excited-state structural distortions and energetics, reveal the origin of the extent of luminescence behavior. The experimental-computational results reported herein unravel the operative structure-luminescence relation in 0D Sb3+-doped In-X hybrids, provide insight into the emission mechanism, and open up avenues toward rational synthesis of strongly emissive materials with desired emission color for targeted applications.
Collapse
Affiliation(s)
- Alisha Basheer Shamla
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Dhritismita Sarma
- Indian Institute of Technology Hyderabad Sangareddy, Kandi, Telangana 502284, India
| | - Deep Kumar Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Anilkumar
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | | | - Arup Mahata
- Indian Institute of Technology Hyderabad Sangareddy, Kandi, Telangana 502284, India
| | - Janardan Kundu
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
3
|
Wei H, Yang Q, Li G, Liu X, Huang J, Wang C, Li X, Cai G. InCl 3-Assisted Surface Defects Restoring to Enhance Lead-Free Cs 2ZrCl 6 Nanocrystals for X-Ray Imaging and Blue LED Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309926. [PMID: 38196153 DOI: 10.1002/smll.202309926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Indexed: 01/11/2024]
Abstract
As one type of recent emerging lead-free perovskites, Cs2ZrCl6 nanocrystals are widely concerned, benefiting from the eminent designability, high X-ray cutoff efficiency, and favorable stability. Improving the luminescence performance of Cs2ZrCl6 nanocrystals has great importance to cater for practical applications. In view of the surface defects frequently formed by the liquid phase method, the particle morphology and surface quality of this material are expected to be regulated if certain intervention is made in the synthesis process. In the work, differing from normal cell lattice modulation based on the ion doping, the grain size and surface morphology of Cs2ZrCl6 nanocrystals are optimized via adding a certain amount of InCl3 to the synthetic solution. The surface defects are restored to inhibit the defect-induced non-radiative transition, resulting in the improvement of the luminescence properties. Moreover, a flexible Cs2ZrCl6@polydimethylsiloxane film with excellent heat, water, and bending resistance and a light-emitting diode (LED) device are fabricated, exhibiting excellent application potential for X-ray imaging and blue LED.
Collapse
Affiliation(s)
- Hanqi Wei
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qihua Yang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guihua Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xuan Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Junben Huang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Chujie Wang
- Hangzhou TiRay Technology Co. Ltd., Hangzhou, 311112, P. R. China
| | - Xiaoming Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Gemei Cai
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
4
|
Zhang G, Yang C, Wei Q, Long J, Shen X, Chen Y, Ke B, Liang W, Zhong X, Zou B. Sb 3+-Doped Indium-Based Metal Halide (Gua) 3InCl 6 with Efficient Yellow Emission. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3841-3852. [PMID: 38207013 DOI: 10.1021/acsami.3c15442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In recent years, low-dimensional organic-inorganic hybrid metal halides (OIHMHs) have shown excellent photophysical properties due to their quantum structure, adjustable energy levels, and energy transfer between inorganic and organic components, which have attracted extensive attention from researchers. Herein, we synthesize a zero-dimensional (0D) OIHMH, Sb3+:(Gua)3InCl6, by introducing Sb3+ into (Gua)3InCl6, which undergoes a significant enhancement of the emission peak at 580 nm with the photoluminescence quantum yield (PLQY) boosted from 17.86 to 95.72% when excited at 340 nm. This boost in photoluminescence of the doped sample was studied by combining ultrafast femtosecond transient absorption, temperature-dependent photoluminescence (PL) spectra, and density functional theory (DFT) calculation, revealing the process of self-trapped exciton (STE) recombination to emit light at both Sb and In sites in this 0D structure simultaneously. This material with the lowest dark STE level at the In site for emission in the undoped sample can amazingly yield very strong emission in the doped sample, which has never been observed before. Finally, we tested its application in a photoelectric device. This work not only helps to gain a deeper understanding of the formation of STEs in In-based halides but also plays a certain guiding role in the design of new luminescent materials.
Collapse
Affiliation(s)
- Guolun Zhang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chengzhi Yang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qilin Wei
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiangjie Long
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiaodong Shen
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yijun Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Bao Ke
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Weizheng Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xianci Zhong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Wu Y, Zhen XM, Zhang B. Antimony-Triggered Tunable White Light Emission in Lead-Free Zero-Dimensional Indium Halide with Ultrastable CCT of White Light Emitting Diodes. Inorg Chem 2023; 62:19573-19581. [PMID: 37970628 DOI: 10.1021/acs.inorgchem.3c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A highly efficient and easily tunable luminescence is significant for solid-state luminescent (SSL) materials. However, achieving a photoluminescence quantum yield (PLQY) close to unity and tuning the emission remain challenging tasks. Metal doping strategies enable resolution of these issues. Herein, we report the preparation of a novel organic-inorganic lead-free indium-based metal halide hybrid (MP)3InCl6•EtOH (MP = C4H10ON) with a typical zero-dimension structure. When excited at 320 nm, (MP)3InCl6•EtOH exhibits a dual emission band at 420 and 600 nm, which originates from the organic cation [MP] and the [InCl6]3- octahedral unit. The photoluminescence can be significantly enhanced through Sb3+ doping, resulting in an increase in PLQY from 0.78% to near unity. Multiple emission color tunings have been achieved by regulating the Sb doping level and the radiation wavelength, resulting in a change in emission color from blue → white → orange. Optical characterizations reveal that the significantly enhanced emission centered at 600 nm can be attributed to more efficient absorption, closely associated with an additional 1S0 → 3P1 transition in the inorganic octahedron [In(Sb)Cl6]3- due to Sb3+ doping. With its excellent optical performance, a white light emitting diode (WLED) has been successfully fabricated by coating the mixture of (MP)3InCl6•EtOH:15%Sb3+ with blue phosphor BaMgAl10O17:Eu2+ onto a UV LED chip. The WLED device exhibits perfect white light emission with regard to the International Commission on Illumination (CIE) coordinates of (0.36, 0.34). Significantly, the WLED device maintains a stable correlated color temperature (CCT) range of 4119-4393 K and CIE coordinates (x: 0.37-0.34, y: 0.35-0.33) as the driven current varies from 20 to 200 mA, demonstrating outstanding stability across different power levels. This work not only presents a novel system for achieving remarkably enhanced luminescent performance and tuning emission bands in 0D metal halides but also represents a significant step toward achieving resistance to color drifting for stable WLEDs.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiao-Meng Zhen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
6
|
Shaek S, Khalfin S, Massasa EH, Lang A, Levy S, Kortstee LTJ, Shamaev B, Dror S, Lifer R, Shechter R, Kauffmann Y, Strassberg R, Polishchuk I, Wong AB, Pokroy B, Castelli IE, Bekenstein Y. How Does Local Strain Affect Stokes Shifts in Halide Double Perovskite Nanocrystals? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9064-9072. [PMID: 37982006 PMCID: PMC10653075 DOI: 10.1021/acs.chemmater.3c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
Lead-free perovskite nanocrystals are of interest due to their nontoxicity and potential application in the display industry. However, engineering their optical properties is nontrivial and demands an understanding of emission from both self-trapped and free excitons. Here, we focus on tuning silver-based double perovskite nanocrystals' optical properties via two iso-valent dopants, Bi and Sb. The photoluminescence quantum yield of the intrinsic Cs2Ag1-yNayInCl6 perovskite increased dramatically upon doping. However, the two dopants affect the optical properties very differently. We hypothesize that the differences arise from their differences in electronic level contributions and ionic sizes. This hypothesis is validated through absorption and temperature dependence photoluminescence measurements, namely, by employing the Huang-Rhys factor, which indicates the coupling of the exciton to the lattice environment. The larger ionic size of Bi also plays a role in inducing significant microstraining verified via synchrotron measurements. These differences make Bi more sensitive to doping concentration over antimony which displays brighter emission (QY ∼40%). Such understanding is important for engineering optical properties in double perovskites, especially in light of recent achievements in boosting the photoluminescence quantum yield.
Collapse
Affiliation(s)
- Saar Shaek
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
- The
Nancy and Stephen Grand Technion Energy Program, Technion − Israel Institute of Technology, 32000 Haifa, Israel
| | - Sasha Khalfin
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Emma Hasina Massasa
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Arad Lang
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Shai Levy
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Lotte T. J. Kortstee
- Department
of Energy Conversion and Storage (DTU Energy), Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kongens Lyngby, Denmark
| | - Betty Shamaev
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Shaked Dror
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Rachel Lifer
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Reut Shechter
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Yaron Kauffmann
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Rotem Strassberg
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
- The
Solid-state institute, Technion −
Israel Institute of Technology, 32000 Haifa, Israel
| | - Iryna Polishchuk
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Andrew Barnabas Wong
- Department
of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore119077, Singapore
| | - Boaz Pokroy
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
| | - Ivano E. Castelli
- Department
of Energy Conversion and Storage (DTU Energy), Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kongens Lyngby, Denmark
| | - Yehonadav Bekenstein
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, 32000 Haifa, Israel
- The
Nancy and Stephen Grand Technion Energy Program, Technion − Israel Institute of Technology, 32000 Haifa, Israel
- The
Solid-state institute, Technion −
Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
7
|
Wang N, Hao S, Xiong Y, Li M, Liu K, Wolverton C, Wang Y, Zhao J, Liu Q. Solution-Obtained (NH 4) 3In 0.95Sb 0.05Cl 6 with High External Photoluminescence Quantum Yield and Excellent Antiquenching Properties. Inorg Chem 2023; 62:17940-17945. [PMID: 37844091 DOI: 10.1021/acs.inorgchem.3c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The efficient broad-band emission from low-dimensional metal halides has garnered significant interest. However, most of these materials exhibit poor stability at the operating temperature of light-emitting diodes. In this study, using the solution method (temperature lower than 90 °C), a new compound (NH4)3In0.95Sb0.05Cl6 was obtained with the structure in the Pnma space group featuring unit-cell parameters of a = 12.3871(4) Å, b = 24.9895(9) Å, and c = 7.7844(3) Å. (NH4)3In0.95Sb0.05Cl6 can be prepared by doping (NH4)2InCl5·H2O when the Sb3+ feeding ratio is in the range of 30-80%. Thermal analysis reveals that (NH4)3In0.95Sb0.05Cl6 is stable up to 320 °C. (NH4)3In0.95Sb0.05Cl6 exhibits broad-band yellow-white emission with extremely high internal and external photoluminescence quantum yields of 93 and 77%, respectively. Interestingly, (NH4)3In0.95Sb0.05Cl6 displays remarkable resistance to thermal quenching, retaining 83% of its initial photoluminescence intensity at 80 °C. A white light-emitting diode is fabricated by combining (NH4)3In0.95Sb0.05Cl6 with a commercial phosphor, and a high color rendering of 92.8 was obtained. This work presents an environmentally friendly, efficient, stable UV-excited broad-band emission material for potential solid-state lighting applications.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, Guangdong, China
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqiang Hao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Xiong
- State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, Guangdong, China
| | - Mingyang Li
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Christopher Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jing Zhao
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Zhou B, Qi Z, Dai M, Xing C, Yan D. Ultralow-loss Optical Waveguides through Balancing Deep-Blue TADF and Orange Room Temperature Phosphorescence in Hybrid Antimony Halide Microstructures. Angew Chem Int Ed Engl 2023; 62:e202309913. [PMID: 37574452 DOI: 10.1002/anie.202309913] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Harnessing the potential of thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) is crucial for developing light-emitting diodes (LEDs), lasers, sensors, and many others. However, effective strategies in this domain are still relatively scarce. This study presents a new approach to achieving highly efficient deep-blue TADF (with a PLQY of 25 %) and low-energy orange RTP (with a PLQY of 90 %) through the fabrication of lead-free hybrid halides. This new class of monomeric and dimeric 0D antimony halides can be facilely synthesized using a bottom-up solution process, requiring only a few seconds to minutes, which offer exceptional stability and nontoxicity. By leveraging the highly adaptable molecular arrangement and crystal packing modes, the hybrid antimony halides demonstrate the ability to self-assemble into regular 1D microrod and 2D microplate morphologies. This self-assembly is facilitated by multiple non-covalent interactions between the inorganic cores and organic shells. Notably, these microstructures exhibit outstanding polarized luminescence and function as low-dimensional optical waveguides with remarkably low optical-loss coefficients. Therefore, this work not only presents a pioneering demonstration of deep-blue TADF in hybrid antimony halides, but also introduces 1D and 2D micro/nanostructures that hold promising potential for applications in white LEDs and low-dimensional photonic systems.
Collapse
Affiliation(s)
- Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meiqi Dai
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Chang Xing
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
9
|
Hao J, An R, Li Y, Wang K, Song S, Feng J, Wang X, Zhang H. Facile synthesis of Sb 3+-doped (Bmim) 2InCl 5(H 2O) through a grinding method for light-emitting diodes. Dalton Trans 2023; 52:6799-6803. [PMID: 37133366 DOI: 10.1039/d3dt00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organic-inorganic metal hybrid halides (OIMHs) as a new kind of photoelectric material have gained much attention in recent years because of their excellent performance in solid-state lighting applications. However, the preparation of most OIMHs is complex and requires a long preparation time in addition to the solvent providing the reaction environment. This greatly limits their further applications. Here, we synthesized zero-dimensional lead-free OIMH (Bmim)2InCl5(H2O) (Bmim = 1-butyl-3-methylimidazolium) by a facile grinding method at room temperature. Through Sb3+ doping, Sb3+:(Bmim)2InCl5(H2O) shows a bright broadband emission centered at 618 nm under UV excitation, which could be attributed to the self-trapped exciton (STE) emission of Sb3+ ions. To explore their ability in the field of solid-state lighting, a white-light-emitting diode (WLED) device based on Sb3+:(Bmim)2InCl5(H2O) with a high color rendering index of 90 was fabricated. This work enriches In3+-based OIMHs and provides a new direction for the simple fabrication of OIMHs.
Collapse
Affiliation(s)
- Jiayue Hao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shuyan Song
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jing Feng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xinyu Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Hongjie Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
10
|
Sun N, Lin J, He S, Cao J, Guo Z, Zhao J, Liu Q, Yuan W. High-Efficiency Intrinsic Yellow-Orange Emission in Hybrid Indium Bromide with Double Octahedral Configuration. Inorg Chem 2023; 62:3018-3025. [PMID: 36752343 DOI: 10.1021/acs.inorgchem.2c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Zero-dimensional (0D) In-based organic-inorganic metal halides (OIMHs) have received growing interest in recent years as promising luminescent materials. However, the high efficiencies of 0D In-based OIMHs are all dependent on Sb doping in the existing literature. Here, we report a novel 0D In-based OIMH (C10H22N2)2In2Br10, which exhibits intrinsic broadband emission (610 nm), and the photoluminescence quantum yield (PLQY) can reach 70% without Sb doping. (C10H22N2)2In2Br10 shows a typical 0D structure with three different In-Br polyhedra (two octahedra and one tetrahedron) separated by large organic cations. Based on the optical property measurements and theoretical calculations, we demonstrate that (C10H22N2)2In2Br10 is an indirect semiconductor with a band gap of 3.74 eV, and the In-Br inorganic moiety is primarily responsible for the intense emission of (C10H22N2)2In2Br10. Interestingly, the unique double octahedral configuration in (C10H22N2)2In2Br10 may enhance the structural distortion and stimulate the self-trapped excitons (STEs), leading to the related high PLQY. Our work provides a novel 0D In-based OIMH with high-efficiency intrinsic emission, which is helpful for understanding the structure-PL relationships of hybrid halides.
Collapse
Affiliation(s)
- Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Liu X, Li H, Zhang T, Zhang L, Zhou L, Li M, He R. Rational Design of a Super-Alkali Compound with Reversible Photoluminescence. Inorg Chem 2023; 62:1054-1061. [PMID: 36606542 DOI: 10.1021/acs.inorgchem.2c04066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The zero-dimensional (0D) (H5O2)(C4H14N2S2)2BiCl8: Sb3+ single crystal is obtained by the cooling crystallization method. Surprisingly, this compound shows reversible photoluminescence (PL) upon H5O2+Cl- removal and insertion. To be specific, the release of H5O2+Cl- resulted in red-orange emission with a very low photoluminescence quantum yield (PLQY). While on the reuptake of it, a bright yellow emission with a nearly 10-fold increase of PLQY was observed. Density functional theory (DFT) calculations and temperature-dependent PL experiments reveal that significant [SbCl6]3- octahedron distortion induced by guest (H5O2+Cl-) removal at the ground state, especially at the excited state, is responsible for the disparate PL performance. Encouragingly, we also found that (C4H14N2S2)2BiCl7: Sb3+ exhibits a fast response (<3 s) to dilute hydrochloric acid with naked-eye perceivable PL color changes, rendering it a potential sensing material for hydrochloric acid.
Collapse
Affiliation(s)
- Xing Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Rongxing He
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| |
Collapse
|
12
|
Shigeta Y, Nomoto T, Kato M, Mizuno M. Mechanical and Thermal ON-OFF Switching of the Vapochromic Behavior of a Luminescent Polymorphic Pt(II) Complex. Inorg Chem 2023; 62:66-74. [PMID: 36543520 DOI: 10.1021/acs.inorgchem.2c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vapochromic materials that exhibit color/luminescence changes induced by vapor exposure have attracted considerable attention. Herein, we report the grinding- and heating-induced ON-OFF switching of the vapochromic behavior of [Pt(ppyCl2)(Clacac)] (1; ppyCl2 = 2-(3-chlorophenyl)-4-chloropyridinato, Clacac = 3-chloroacetylacetonato). 1 formed yellow and orange polymorphs (1-Y and 1-O), and 1-Y could be converted to 1-Og, which showed a very similar crystal structure but with a broadened X-ray diffraction pattern compared with that of 1-O. Moreover, 1-Og can be reversibly transformed into 1-O via heating and grinding. Notably, 1-Og underwent a N,N-dimethylacetamide vapor-induced transformation to 1-Y, whereas 1-O did not undergo such a transformation. These results indicate the ON-OFF switching of vapochromic behavior induced via grinding and heating. This finding will be beneficial for developing intelligent molecular devices.
Collapse
Affiliation(s)
- Yasuhiro Shigeta
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan.,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Tatsuya Nomoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo669-1330, Japan
| | - Motohiro Mizuno
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan.,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| |
Collapse
|
13
|
Wang Z, Wang X, Chen Z, Liu Y, Xie H, Xue J, Mao L, Yan Y, Lu H. Turn-on Circularly Polarized Luminescence in Chiral Indium Chlorides by 5s 2 Metal Centers. Angew Chem Int Ed Engl 2022; 62:e202215206. [PMID: 36527254 DOI: 10.1002/anie.202215206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Introducing chirality into the metal-halide hybrids has enabled many emerging properties including chiroptical activity, spin-dependent transport, and ferroelectricity. However, most of the chiral metal-halide hybrids to date are non-emissive, and the underlying mechanism remains elusive. Here, we show a new strategy to turn on the circularly polarized luminescence (CPL) in chiral metal-halide hybrids. We demonstrate that alloying Sb3+ into chiral indium-chloride hybrids dramatically increases the photoluminescence quantum yield in two new series of chiral indium-antimony chlorides. These materials exhibit strong CPL signals with tunable energy and a high dissymmetry factor up to 1.5×10-2 . Mechanistic studies reveal that the emission originates from the self-trapped excitons centered in 5s2 Sb3+ . Moreover, near-ultraviolet pumped white light is demonstrated with a polarization up to 6.0 %. Our work demonstrates new strategies towards highly luminescent chiral metal-halide hybrids.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR), China
| | - Xiaoming Wang
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA
| | - Zhongwei Chen
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR), China
| | - Yang Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huilin Xie
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR), China
| | - Jie Xue
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR), China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yanfa Yan
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA
| | - Haipeng Lu
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR), China
| |
Collapse
|
14
|
Zhang Z, Cheng H, Teng S, Huang K, Wang D, Yang W, Xie R. Thermally Induced Reversible Fluorescence Switching of Lead Chloride Hybrids for Anticounterfeiting and Encryption. Inorg Chem 2022; 61:20552-20560. [DOI: 10.1021/acs.inorgchem.2c03384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhinan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Haiming Cheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Shiyong Teng
- First Hospital, Jilin University, Changchun130021, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| |
Collapse
|
15
|
Li M, Lin J, Wang N, Liu K, Fan L, Guo Z, Yuan W, Zhao J, Liu Q. Synthetic-Method-Dependent Antimony Bromides and Their Photoluminescent Properties. Inorg Chem 2022; 61:15016-15022. [PMID: 36094900 DOI: 10.1021/acs.inorgchem.2c01900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, excellent optical properties of low-dimensional organic-inorganic metal halides, stemming from their tunable structure and optoelectronic properties, have been demonstrated. The synthetic method is critical because it is highly related to the structure and properties of the halide. Herein, we obtain two different antimony bromides, (Bmpip)2SbBr5 and (Bmpip)3Sb2Br9, which both possess the P21/c space group having different crystal structures, and this confirms the important influence of synthesis on the single-crystal structure. (Bmpip)2SbBr5 contains Bmpip+ and [SbBr5]2- pyramids, and (Bmpip)3Sb2Br9 consists of Bmpip+ and Sb-based dimers [Sb2Br9]3-. Under 400 nm excitation, (Bmpip)2SbBr5 exhibits a 640 nm orange emission with a quantum yield of ∼11.5% owing to Sb 5s2 electron luminescence. A diode was fabricated by (Bmpip)2SbBr5 and commercial phosphors and showed a high color render index of 92. Our work reveals the effect of the preparation method on the crystal structure. A luminescent material was finally identified.
Collapse
Affiliation(s)
- Mingyang Li
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jiawei Lin
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Na Wang
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Liubing Fan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
16
|
Shi X, Li Z, Cao M, Rao Z, Zhao X, Gong X. Fast HCl-free Synthesis of Lead-free Rb 2ZrCl 6: xSb 3+ Perovskites. Inorg Chem 2022; 61:14095-14101. [PMID: 35994396 DOI: 10.1021/acs.inorgchem.2c02140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the toxicity and instability issues of lead halide perovskites, lead-free perovskites have recently emerged as a viable alternative. However, significant optical band gaps of lead-free perovskites exert influence on their luminescent properties. Fortunately, the addition of dopants becomes an efficacious solution. The current widely utilized methods for synthesizing perovskites almost require high temperatures, a long period, and atmosphere protection, which cost more energy and resources. In this paper, we report that Rb2ZrCl6:xSb3+ perovskite phosphors can be easily prepared by a wet grinding approach at room temperature, which is a more efficient and facile process. Due to the self-trapped excitons of the host structure and Sb3+ ions, the produced samples display blue-white and orange fluorescence under UV lamp irradiation at 254 and 365 nm, respectively. In the photoluminescence spectrum, the doped perovskite exhibits an emission peak at 630 nm under excitation at 365 nm. Importantly, the prepared phosphors have tunable emissions related to the excitation wavelength. In addition, our produced powders show remarkable stability at room temperature, laying the foundations for this approach to be widely used in perovskite production.
Collapse
Affiliation(s)
- Xinyu Shi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zhilin Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Mengyan Cao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zhihui Rao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
17
|
Liu X, Zhang W, Xu R, Tu J, Fang G, Pan Y. Bright tunable luminescence of Sb 3+ doping in zero-dimensional lead-free halide Cs 3ZnCl 5 perovskite crystals. Dalton Trans 2022; 51:10029-10035. [PMID: 35723449 DOI: 10.1039/d2dt01243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead-free zero-dimensional (0D) perovskite nanocrystals (NCs) with isolated octahedral structures have attracted considerable attention due to their unique photoelectric properties, such as highly efficient emissions with broadband features. A series of phosphors composed of Sb3+-doped 0D perovskite crystals Cs3ZnCl5 with wavelength-tunable emission spectra have been obtained using a facile recrystallization method at room temperature in air. By controlling the doping concentration of Sb3+ in Cs3ZnCl5 lattice, bright emissions from red to orange have been achieved under excitation at 320 nm due to the expansion of the crystal lattice, and the emission excited at 275 nm is bluish-white, spanning the full visible region. Inductively coupled plasma emission spectrometry (ICP) demonstrates the Sb3+ substitutes for Zn2+ rather than Cs+ due to the similar charges and ionic radii. The luminescence performance of phosphor Cs3ZnCl5:Sb3+ can be improved obviously by replacing 3 mol% of Cs+ with Rb+ or K+ due to the further distortion of the crystal lattice. The present approach allows the synthesis of large-scale emissive lead-free 0D perovskites activated by Sb3+ with tunable luminescence color.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.
| | - Weibing Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.
| | - Rui Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.
| | - Jiayu Tu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.
| | - Yuexiao Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.
| |
Collapse
|
18
|
Zhang X, Jiang X, Liu K, Fan L, Cao J, He S, Wang N, Zhao J, Lin Z, Liu Q. Small Organic Molecular-Based Hybrid Halides with High Photoluminescence Quenching Temperature. Inorg Chem 2022; 61:7560-7567. [PMID: 35503095 DOI: 10.1021/acs.inorgchem.2c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organic-inorganic metal halides (OIMHs) exhibit excellent photoelectric properties; however, their high-temperature light-emission stability requires further improvement. Here, we report three isostructural OIMHs (C2H8N)4InCl7, (C2H8N)4SbCl7, and (C2H8N)4SbBr7 (C2H8N+ = dimethylammonium). They are all crystallized in the P21212 space group with a zero-dimensional (0D) structure, with orange-red photoluminescence (PL) under 365 nm UV excitation. Among them, (C2H8N)4InCl7 exhibits the strongest PL with a photoluminescence quantum yield (PLQY) of 13.9% at room temperature. Optical property measurements and density functional theory unveil that the luminescence of (C2H8N)4InCl7 at 405 and 620 nm is due to free exciton and self-trapped exciton emission, respectively. It is worth noting that (C2H8N)4InCl7 shows a high PL quenching temperature, maintaining 50% of its room-temperature PL intensity at 425 K, which is rare in OIHMs. This is much higher than the application temperature of phosphors in practical solid-state lighting applications (363-383 K). In this temperature range, the luminous intensity of (C2H8N)4InCl7 exceeds 60% of that at room temperature. The high PL quenching temperature observed in (C2H8N)4InCl7 indicates the potential of OIMHs for applications in phosphor-converted light-emitting diodes.
Collapse
Affiliation(s)
- Xusheng Zhang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xingxing Jiang
- Center for Crystal Research and Development, Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29, Zhong Guan Cun Dong Lu, Beijing 100190, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liubing Fan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Wang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - ZheShuai Lin
- Center for Crystal Research and Development, Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29, Zhong Guan Cun Dong Lu, Beijing 100190, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
19
|
Meng X, Wei Q, Lin W, Huang T, Ge S, Yu Z, Zou B. Efficient Yellow Self-Trapped Exciton Emission in Sb 3+-Doped RbCdCl 3 Metal Halides. Inorg Chem 2022; 61:7143-7152. [PMID: 35485212 DOI: 10.1021/acs.inorgchem.2c00667] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metal halide perovskites have flexible crystal and electronic structures and adjustable emission characteristics, which have very broad applications in the optoelectronic field. Among them, all-inorganic perovskites have attracted more attention than others in recent years because of their characteristics of large diffusion length, high luminescence efficiency, and good stability. In this work, Sb3+-doped RbCdCl3 crystalline powder was synthesized by a simple hydrothermal method, and its luminescence properties were studied, which showed a broad emission band with a large Stokes shift and efficient yellow light emission at about 596 nm at room temperature with a photoluminescence quantum yield of 91.7%. The emission came from the transition of the self-trapped exciton 1 (STE1) out of 3Pn (n = 0, 1, and 2) to S0 due to strong electron-phonon coupling, which scaled with increasing temperature. Moreover, its emission color became white at low temperatures due to the occurrence of transition of other self-trapped exciton 0 (STE0) state emission out of the 1S states of Sb ions to S0 in the lattice. These emission color changes may be used for temperature sensing, and this Sb3+-doped RbCdCl3 material expands the knowledge of the efficient luminescent inorganic material family for further applications of all-inorganic perovskites.
Collapse
Affiliation(s)
- Xianfu Meng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Qilin Wei
- School of Physics, Guangxi University, Nanning 530004, China
| | - Wenchao Lin
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Tao Huang
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Shuaigang Ge
- School of Physics, Guangxi University, Nanning 530004, China
| | - Zongmian Yu
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
20
|
Li J, Sang Y, Xu L, Lu H, Wang J, Chen Z. Highly Efficient Light‐Emitting Diodes Based on an Organic Antimony(III) Halide Hybrid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jin‐Long Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yu‐Feng Sang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Liang‐Jin Xu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Hai‐Yue Lu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jin‐Yun Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhong‐Ning Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
21
|
Lin J, Liu K, Ruan H, Sun N, Chen X, Zhao J, Guo Z, Liu Q, Yuan W. Zero-Dimensional Lead-Free Halide with Indirect Optical Gap and Enhanced Photoluminescence by Sb Doping. J Phys Chem Lett 2022; 13:198-207. [PMID: 34967650 DOI: 10.1021/acs.jpclett.1c03649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three new lead-free organic-inorganic metal halides (OIMHs) (C7H8N3)3InX6·H2O (X = Cl, Br) and (C7H8N3)2SbBr5 were synthesized. First-principles calculations indicate that the highest occupied molecular orbitals (HOMOs) of the two In-based OIMHs are constituted of π orbitals from [C7H8N3]+ spacers. (C7H8N3)3InX6·H2O (X = Cl, Br) shows an indirect optical gap, which may result from this organic-contributed band edge. Despite the indirect-gap nature with extra phonon process during absorption, the photoluminescence of (C7H8N3)3InBr6·H2O can still be significantly enhanced through Sb doping, with the internal photoluminescence quantum yields (PLQY) increased 10-fold from 5% to 52%. A white light-emitting diode (WLED) was fabricated based on (C7H8N3)3InBr6·H2O:Sb3+, exhibiting a high color-rendering index of 90. Our work provides new systems to deeply understand the principles for organic spacer choice to obtain the 0D metal OIMHs with specific band structure and also the significant enhancement of luminescence performance by chemical doping.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hang Ruan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
22
|
Wu Y, Shi CM, Kang SR, Xu LJ. Antimony -doped indium-based halide single crystals enabling white-light emission. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal halides (TMPL)3InCl6·EtOH:xSb3+ with tunable colors were obtained by gradient Sb3+ doping. Interestingly, white emission was achieved when 0.1% of Sb3+ was employed, due to a combination of the cyan emission of organic moiety and orange emission from metal halides.
Collapse
Affiliation(s)
- Yue Wu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Cui-Mi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shi-Rong Kang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Liang-Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
23
|
Cheng H, Cao C, Zhang Y, Wang D, Yang W, Xie R. Lead-free broadband orange-emitting zero-dimensional Sb 3+-doped indium-based organic–inorganic metal halides. NEW J CHEM 2022. [DOI: 10.1039/d2nj03090j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An orange-yellow phosphor Sb3+: (CH3NH3)4InCl6·Cl was prepared via a mechanical ball-milling method. Sb3+-doped (CH3NH3)4InCl6·Cl was able to emit orange light (∼607 nm) under UV light excitation, and the PLQY is as high as 67.72%.
Collapse
Affiliation(s)
- Haiming Cheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China
| | - Chi Cao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China
| | - Ying Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Li JL, Sang YF, Xu LJ, Lu HY, Wang JY, Chen ZN. Highly Efficient Light-Emitting Diodes Based on an Organic Antimony(III) Halide Hybrid. Angew Chem Int Ed Engl 2021; 61:e202113450. [PMID: 34837440 DOI: 10.1002/anie.202113450] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/26/2022]
Abstract
As low-dimensional lead-free hybrids with higher stability and lower toxicity than those of three-dimensional lead perovskites, organic antimony(III) halides show great application potential in opt-electronic field owing to diverse topologies along with exceptional optical properties. We report herein an antimony(III) hybrid (MePPh3 )2 SbCl5 with a zero-dimensional (0D) structure, which exhibits brilliant orange emission peaked at 593 nm with near-unity photoluminescent quantum yield (99.4 %). The characterization of photophysical properties demonstrates that the broadband emission with a microsecond lifetime (3.24 μs) arises from self-trapped emission (STE). Electrically driven organic light-emitting diodes (OLEDs) based on neat and doped films of (MePPh3 )2 SbCl5 were fabricated. The doped devices show significant improvement in comparison to non-doped OLEDs. Owing to the much improved surface morphology and balanced carrier transport in light-emitting layers of doped devices, the peak luminance, current efficiency (CE) and external quantum efficiency (EQE) are boosted from 82 cd m-2 to 3500 cd m-2 , 1.1 cd A-1 to 6.8 cd A-1 , and 0.7 % to 3.1 % relative to non-doped devices, respectively.
Collapse
Affiliation(s)
- Jin-Long Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yu-Feng Sang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Liang-Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Hai-Yue Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
25
|
Arfin H, Nag A. Origin of Luminescence in Sb 3+- and Bi 3+-Doped Cs 2SnCl 6 Perovskites: Excited State Relaxation and Spin-Orbit Coupling. J Phys Chem Lett 2021; 12:10002-10008. [PMID: 34618471 DOI: 10.1021/acs.jpclett.1c02973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sb3+- and Bi3+-doped Cs2SnCl6 zero-dimensional perovskites are emerging as stable and nontoxic phosphors for light emitting diodes. The outermost s-electrons (ns2) of the dopants are responsible for both light absorption (ns2 to ns1np1) and emission (ns1np1 to ns2). At cryogenic temperatures, the Sb3+ dopant shows two emission peaks, but Bi3+ shows only one emission peak. Why? Here we address such questions, revealing the origin of luminescence in Sb3+- and Bi3+-doped Cs2SnCl6. We find that the emitting excited state ns1np1 is a triplet state 3T1u*. The notation "*" implies spin-orbit coupling between the 3T1u and 1T1u states. After light absorption, 3T1u* is occupied with one electron, which then undergoes Jahn-Teller distortion yielding a relaxed excited state (RES). For the Sb3+ dopant, the combination of Jahn-Teller distortion and spin-orbit coupling gives rise to two minima in RES 3T1u*, resulting in two emission peaks, whereas for the Bi3+ dopant, the spin-orbit coupling significantly dominates over the Jahn-Teller splitting yielding a single minimum in RES 3T1u* and, therefore, a single emission peak.
Collapse
Affiliation(s)
- Habibul Arfin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Angshuman Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| |
Collapse
|
26
|
Wei JH, Liao JF, Zhou L, Luo JB, Wang XD, Kuang DB. Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting. SCIENCE ADVANCES 2021; 7:7/34/eabg3989. [PMID: 34417176 PMCID: PMC8378825 DOI: 10.1126/sciadv.abg3989] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/01/2021] [Indexed: 05/03/2023]
Abstract
Although single-source white emissive perovskite has emerged as a class of encouraging light-emitting material, the synthesis of lead-free halide perovskite materials with high luminous efficiency is still challenging. Here, we report a series of zero-dimensional indium-antimony (In/Sb) alloyed halide single crystals, BAPPIn2-2x Sb2x Cl10 (BAPP = C10H28N4, x = 0 to 1), with tunable emission. In BAPPIn1.996Sb0.004Cl10, bright yellow emission with near 100% photoluminescence quantum yield (PLQY) is yielded when it was excited at 320 nm, which turns into bright white-light emission with a PLQY of 44.0% when excited at 365 nm. Combined spectroscopy and theoretical studies reveal that the BAPP4+-associated blue emission and inorganic polyhedron-afforded orange emission function as a perfect pair of complementary colors affording white light in BAPPIn1.996Sb0.004Cl10 Moreover, the interesting afterglow behavior, together with excitation-dependent emission property, makes BAPPIn2-2x Sb2x Cl10 as high-performance anti-counterfeiting/information storage materials.
Collapse
Affiliation(s)
- Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xu-Dong Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|