2
|
Van On V, Guerrero-Sanchez J, Hoat DM. Modifying the electronic and magnetic properties of the scandium nitride semiconductor monolayer via vacancies and doping. Phys Chem Chem Phys 2024; 26:3587-3596. [PMID: 38214549 DOI: 10.1039/d3cp04977a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In this work, the effects of vacancies and doping on the electronic and magnetic properties of the stable scandium nitride (ScN) monolayer are investigated using first-principles calculations. The pristine monolayer is a two-dimensional (2D) indirect-gap semiconductor material with an energy gap of 1.59(2.84) eV as calculated using the GGA-PBE (HSE06) functional. The projected density of states, charge distribution, and electron localization function assert its ionic character generated by the charge transfer from the Sc atoms to the N atoms. The monolayer is magnetized by a single Sc vacancy with a total magnetic moment of 3.00μB, while a single N vacancy causes a weaker magnetization with a total magnetic moment of 0.52μB. In both cases, the magnetism originates mainly from the atoms closest to the defect site. Significant magnetization is also reached by doping with acceptor impurities. Specifically, a total magnetic moment of 2.00μB is obtained by doping with alkali metals (Li and Na) in the Sc sublattice and with B in the N sublattice. Doping with alkaline earth metals (Be and Mg) in the Sc sublattice and with C in the N sublattice induces a value of 1.00μB. In these cases, either magnetic semiconducting or half-metallicity characteristics arise in the ScN monolayer, making it a prospective 2D spintronic material. In contrast, no magnetism is induced by doping with donor impurities (O and F atoms) in the N sublattice. An O impurity metallizes the monolayer; meanwhile, F doping leads to a large band-gap reduction of the order of 82%, widening the working regime of the monolayer in optoelectronic devices. The results presented herein may introduce efficient methods to functionalize the ScN monolayer for optoelectronic and spintronic applications.
Collapse
Affiliation(s)
- Vo Van On
- Center for Forecasting Study, Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - J Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Código Postal 22800, Baja California, Mexico
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
3
|
Liu H, Wang A, Zhang P, Ma C, Chen C, Liu Z, Zhang YQ, Feng B, Cheng P, Zhao J, Chen L, Wu K. Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor. Nat Commun 2023; 14:3690. [PMID: 37344475 DOI: 10.1038/s41467-023-39361-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Polaron is a composite quasiparticle derived from an excess carrier trapped by local lattice distortion, and it has been studied extensively for decades both theoretically and experimentally. However, atomic-scale creation and manipulation of single-polarons in real space have still not been achieved so far, which precludes the atomistic understanding of the properties of polarons as well as their applications. Herein, using scanning tunneling microscopy, we succeeded to create single polarons in a monolayer two-dimensional (2D) semiconductor, CoCl2. Combined with first-principles calculations, two stable polaron configurations, centered at atop and hollow sites, respectively, have been revealed. Remarkably, a series of manipulation progresses - from creation, erasure, to transition - can be accurately implemented on individual polarons. Our results pave the way to understand the physics of polaron at atomic level, and the easy control of single polarons in 2D semiconductor may open the door to 2D polaronics including the data storage.
Collapse
Affiliation(s)
- Huiru Liu
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Aolei Wang
- Department of Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Ping Zhang
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Chen Ma
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Caiyun Chen
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Zijia Liu
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Yi-Qi Zhang
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, 15260, PA, USA.
- Hefei National Laboratory, University of Science and Technology of China, 230088, Hefei, Anhui, China.
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China.
| |
Collapse
|
4
|
de Abreu JC, Nery JP, Giantomassi M, Gonze X, Verstraete MJ. Spectroscopic signatures of nonpolarons: the case of diamond. Phys Chem Chem Phys 2022; 24:12580-12591. [PMID: 35579374 DOI: 10.1039/d2cp01012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polarons are quasi-particles made from electrons interacting with vibrations in crystal lattices. They derive their name from the strong electron-vibration polar interactions in ionic systems, that induce spectroscopic and optical signatures of such quasi-particles. In this paper, we focus on diamond, a non-polar crystal with inversion symmetry which nevertheless shows interesting signatures stemming from electron-vibration interactions, better denoted "nonpolaron" signatures in this case. The (non)polaronic effects are produced by short-range crystal fields, while long-range quadrupoles only have a small influence. The corresponding many-body spectral function has a characteristic energy dependence, showing a plateau structure that is similar to but distinct from the satellites observed in the polar Fröhlich case. We determine the temperature-dependent spectral function of diamond by two methods: the standard Dyson-Migdal approach, which calculates electron-phonon interactions within the lowest-order expansion of the self-energy, and the cumulant expansion, which includes higher orders of electron-phonon interactions. The latter corrects the nonpolaron energies and broadening, providing a more realistic spectral function, which we examine in detail for both conduction and valence band edges.
Collapse
Affiliation(s)
- Joao C de Abreu
- nanomat/Q-MAT/CESAM and European Theoretical Spectroscopy Facility, Université de Liège, B-4000, Belgium.
| | - Jean Paul Nery
- Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
| | - Matteo Giantomassi
- UCLouvain, Institute of Condensed Matter and Nanosciences (IMCN), Chemin des Étoiles 8, B-1348 Louvain-la-Neuve, Belgium
| | - Xavier Gonze
- UCLouvain, Institute of Condensed Matter and Nanosciences (IMCN), Chemin des Étoiles 8, B-1348 Louvain-la-Neuve, Belgium.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Matthieu J Verstraete
- nanomat/Q-MAT/CESAM and European Theoretical Spectroscopy Facility, Université de Liège, B-4000, Belgium.
| |
Collapse
|