1
|
Chin SY, Chen Y, Zhao L, Liu X, Chng CP, Soman A, Nordenskiöld L, Huang C, Shi X, Xue K. Investigating Different Dynamic pHP1α States in Their KCl-Mediated Liquid-Liquid Phase Separation (LLPS) Using Solid-State NMR (SSNMR) and Molecular Dynamic (MD) Simulations. J Phys Chem B 2024; 128:10451-10459. [PMID: 39387162 DOI: 10.1021/acs.jpcb.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chromatin phase separation is dynamically regulated by many factors, such as post-translational modifications and effector proteins, and plays a critical role in genomic activities. The liquid-liquid phase separation (LLPS) of chromatin and/or effector proteins has been observed both in vitro and in vivo. However, the underlying mechanisms are largely unknown, and elucidating the physicochemical properties of the phase-separated complexes remains technically challenging. In this study, we detected dynamic, viscous, and intermediate components within the phosphorylated heterochromatin protein 1α (pHP1α) phase-separated system by using modified solid-state NMR (SSNMR) pulse sequences. The basis of these sequences relies on the different time scale of motion detected by heteronuclear Overhauser effect (hetNOE), scalar coupling-based, and dipolar coupling-based transfer schemes in NMR. In comparison to commonly utilized scalar coupling-based methods for studying the dynamic components in phase-separated systems, hetNOE offers more direct insight into molecular dynamics. NMR signals from the three different states in the protein gel were selectively excited and individually studied. Combined with molecular dynamics (MD) simulations, our findings indicate that at low KCl concentration (30 mM), the protein gel displays reduced molecular motion. Conversely, an increase in molecular motion was observed at a high KCl concentration (150 mM), which we attribute to the resultant intermolecular electrostatic interactions regulated by KCl.
Collapse
Affiliation(s)
- Sze Yuet Chin
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Xinyi Liu
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798 Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798 Singapore
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Kai Xue
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- School of Physical and Mathematical Science, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
2
|
Jaroniec CP. Structural and dynamic studies of chromatin by solid-state NMR spectroscopy. Curr Opin Struct Biol 2024; 89:102921. [PMID: 39293192 DOI: 10.1016/j.sbi.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Chromatin is a complex of DNA with histone proteins organized into nucleosomes that regulates genome accessibility and controls transcription, replication and repair by dynamically switching between open and compact states as a function of different parameters including histone post-translational modifications and interactions with chromatin modulators. Continuing advances in structural biology techniques including X-ray crystallography, cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy have facilitated studies of chromatin systems, in spite of challenges posed by their large size and dynamic nature, yielding important functional and mechanistic insights. In this review we highlight recent applications of magic angle spinning solid-state NMR - an emerging technique that is uniquely-suited toward providing atomistic information for rigid and flexible regions within biomacromolecular assemblies - to detailed characterization of structure, conformational dynamics and interactions for histone core and tail domains in condensed nucleosomes and oligonucleosome arrays mimicking chromatin at high densities characteristic of the cellular environment.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
3
|
Marunde MR, Fuchs HA, Burg JM, Popova IK, Vaidya A, Hall NW, Weinzapfel EN, Meiners MJ, Watson R, Gillespie ZB, Taylor HF, Mukhsinova L, Onuoha UC, Howard SA, Novitzky K, McAnarney ET, Krajewski K, Cowles MW, Cheek MA, Sun ZW, Venters BJ, Keogh MC, Musselman CA. Nucleosome conformation dictates the histone code. eLife 2024; 13:e78866. [PMID: 38319148 PMCID: PMC10876215 DOI: 10.7554/elife.78866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.
Collapse
Affiliation(s)
| | - Harrison A Fuchs
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillChapel HillUnited States
| | | | | | | | | | | | - Catherine A Musselman
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
4
|
Sun W, Lebedenko OO, Salguero NG, Shannon MD, Zandian M, Poirier MG, Skrynnikov NR, Jaroniec CP. Conformational and Interaction Landscape of Histone H4 Tails in Nucleosomes Probed by Paramagnetic NMR Spectroscopy. J Am Chem Soc 2023; 145:25478-25485. [PMID: 37943892 PMCID: PMC10719895 DOI: 10.1021/jacs.3c10340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The fundamental repeat unit of chromatin, the nucleosome, consists of approximately 147 base pairs of double-stranded DNA and a histone protein octamer containing two copies each of histones H2A, H2B, H3, and H4. Each histone possesses a dynamically disordered N-terminal tail domain, and it is well-established that the tails of histones H3 and H4 play key roles in chromatin compaction and regulation. Here we investigate the conformational ensemble and interactions of the H4 tail in nucleosomes by means of solution NMR measurements of paramagnetic relaxation enhancements (PREs) in recombinant samples reconstituted with 15N-enriched H4 and nitroxide spin-label tagged H3. The experimental PREs, which report on the proximities of individual H4 tail residues to the different H3 spin-label sites, are interpreted by using microsecond time-scale molecular dynamics simulations of the nucleosome core particle. Collectively, these data enable improved localization of histone H4 tails in nucleosomes and support the notion that H4 tails engage in a fuzzy complex interaction with nucleosomal DNA.
Collapse
Affiliation(s)
- Wenjun Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Olga O. Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Nicole Gonzalez Salguero
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew D. Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, West Lafayette 47907, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Elathram N, Ackermann BE, Clark ET, Dunn SR, Debelouchina GT. Phosphorylated HP1α-Nucleosome Interactions in Phase Separated Environments. J Am Chem Soc 2023; 145:23994-24004. [PMID: 37870432 PMCID: PMC10636758 DOI: 10.1021/jacs.3c06481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
In the nucleus, transcriptionally silent genes are sequestered into heterochromatin compartments comprising nucleosomes decorated with histone H3 Lys9 trimethylation and a protein called HP1α. This protein can form liquid-liquid droplets in vitro and potentially organize heterochromatin through a phase separation mechanism that is promoted by phosphorylation. Elucidating the molecular interactions that drive HP1α phase separation and its consequences on nucleosome structure and dynamics has been challenging due to the viscous and heterogeneous nature of such assemblies. Here, we tackle this problem by a combination of solution and solid-state NMR spectroscopy, which allows us to dissect the interactions of phosphorylated HP1α with nucleosomes in the context of phase separation. Our experiments indicate that phosphorylated human HP1α does not cause any major rearrangements to the nucleosome core, in contrast to the yeast homologue Swi6. Instead, HP1α interacts specifically with the methylated H3 tails and slows the dynamics of the H4 tails. Our results shed light on how phosphorylated HP1α proteins may regulate the heterochromatin landscape, while our approach provides an atomic resolution view of a heterogeneous and dynamic biological system regulated by a complex network of interactions and post-translational modifications.
Collapse
Affiliation(s)
- Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Evan T. Clark
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Shelby R. Dunn
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Jennings CE, Zoss CJ, Morrison EA. Arginine anchor points govern H3 tail dynamics. Front Mol Biosci 2023; 10:1150400. [PMID: 37261328 PMCID: PMC10228543 DOI: 10.3389/fmolb.2023.1150400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
Chromatin is dynamically reorganized spatially and temporally, and the post-translational modification of histones is a key component of this regulation. The basic subunit of chromatin is the nucleosome core particle, consisting of two copies each of the histones H2A, H2B, H3, and H4 around which ∼147 base pairs of DNA wrap. The intrinsically disordered histone termini, or tails, protrude from the core and are heavily post-translationally modified. Previous studies have shown that the histone tails exist in dynamic ensembles of DNA-bound states within the nucleosome. Histone tail interactions with DNA are involved in nucleosome conformation and chromatin organization. Charge-modulating histone post-translational modifications (PTMs) are poised to perturb the dynamic interactions between histone tails and DNA. Arginine side chains form favorable interactions with DNA and are sites of charge-modulating PTMs such as citrullination. Our current focus is on the H3 tail, the longest histone tail. Four arginine residues are relatively evenly spaced along the H3 tail sequence, suggesting multivalent interactions with DNA poised for regulation by PTMs. In this study, we use NMR nuclear spin relaxation experiments to investigate the contribution of arginine residues to H3 tail dynamics within the nucleosome core particle. By neutralizing arginine via mutation to glutamine, we begin to work towards a comprehensive understanding of the contribution of individual residues to H3 tail dynamics. We find that neutralization of arginine residues results in increased regional mobility of the H3 tails, with implications for understanding the direct effects of arginine citrullination. Altogether, these studies support a role for dynamics within the histone language and emphasize the importance of charge-modulating histone PTMs in regulating chromatin dynamics, starting at the level of the basic subunit of chromatin.
Collapse
Affiliation(s)
- Christine E. Jennings
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Casey J. Zoss
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Emma A. Morrison
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
7
|
Kim T, Nosella M, Bolik-Coulon N, Harkness R, Huang S, Kay L. Correlating histone acetylation with nucleosome core particle dynamics and function. Proc Natl Acad Sci U S A 2023; 120:e2301063120. [PMID: 37011222 PMCID: PMC10104578 DOI: 10.1073/pnas.2301063120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Epigenetic modifications of chromatin play a critical role in regulating the fidelity of the genetic code and in controlling the translation of genetic information into the protein components of the cell. One key posttranslational modification is acetylation of histone lysine residues. Molecular dynamics simulations, and to a smaller extent experiment, have established that lysine acetylation increases the dynamics of histone tails. However, a systematic, atomic resolution experimental investigation of how this epigenetic mark, focusing on one histone at a time, influences the structural dynamics of the nucleosome beyond the tails, and how this translates into accessibility of protein factors such as ligases and nucleases, has yet to be performed. Herein, using NMR spectroscopy of nucleosome core particles (NCPs), we evaluate the effects of acetylation of each histone on tail and core dynamics. We show that for histones H2B, H3, and H4, the histone core particle dynamics are little changed, even though the tails have increased amplitude motions. In contrast, significant increases to H2A dynamics are observed upon acetylation of this histone, with the docking domain and L1 loop particularly affected, correlating with increased susceptibility of NCPs to nuclease digestion and more robust ligation of nicked DNA. Dynamic light scattering experiments establish that acetylation decreases inter-NCP interactions in a histone-dependent manner and facilitates the development of a thermodynamic model for NCP stacking. Our data show that different acetylation patterns result in nuanced changes to NCP dynamics, modulating interactions with other protein factors, and ultimately controlling biological output.
Collapse
Affiliation(s)
- Tae Hun Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Michael L. Nosella
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Robert W. Harkness
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Shuya Kate Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| |
Collapse
|
8
|
Smrt ST, Gonzalez Salguero N, Thomas JK, Zandian M, Poirier MG, Jaroniec CP. Histone H3 core domain in chromatin with different DNA linker lengths studied by 1H-Detected solid-state NMR spectroscopy. Front Mol Biosci 2023; 9:1106588. [PMID: 36660422 PMCID: PMC9846530 DOI: 10.3389/fmolb.2022.1106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Chromatin, a dynamic protein-DNA complex that regulates eukaryotic genome accessibility and essential functions, is composed of nucleosomes connected by linker DNA with each nucleosome consisting of DNA wrapped around an octamer of histones H2A, H2B, H3 and H4. Magic angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy can yield unique insights into histone structure and dynamics in condensed nucleosomes and nucleosome arrays representative of chromatin at physiological concentrations. Recently we used J-coupling-based solid-state NMR methods to investigate with residue-specific resolution the conformational dynamics of histone H3 N-terminal tails in 16-mer nucleosome arrays containing 15, 30 or 60 bp DNA linkers. Here, we probe the H3 core domain in the 16-mer arrays as a function of DNA linker length via dipolar coupling-based 1H-detected solid-state NMR techniques. Specifically, we established nearly complete assignments of backbone chemical shifts for H3 core residues in arrays with 15-60 bp DNA linkers reconstituted with 2H,13C,15N-labeled H3. Overall, these chemical shifts were similar irrespective of the DNA linker length indicating no major changes in H3 core conformation. Notably, however, multiple residues at the H3-nucleosomal DNA interface in arrays with 15 bp DNA linkers exhibited relatively pronounced differences in chemical shifts and line broadening compared to arrays with 30 and 60 bp linkers. These findings are consistent with increased heterogeneity in nucleosome packing and structural strain within arrays containing short DNA linkers that likely leads to side-chains of these interfacial residues experiencing alternate conformations or shifts in their rotamer populations relative to arrays with the longer DNA linkers.
Collapse
Affiliation(s)
- Sean T. Smrt
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Nicole Gonzalez Salguero
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Justin K. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
FACT modulates the conformations of histone H2A and H2B N-terminal tails within nucleosomes. Commun Biol 2022; 5:814. [PMID: 35963897 PMCID: PMC9376062 DOI: 10.1038/s42003-022-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Gene expression is regulated by the modification and accessibility of histone tails within nucleosomes. The histone chaperone FACT (facilitate chromatin transcription), comprising SPT16 and SSRP1, interacts with nucleosomes through partial replacement of DNA with the phosphorylated acidic intrinsically disordered (pAID) segment of SPT16; pAID induces an accessible conformation of the proximal histone H3 N-terminal tail (N-tail) in the unwrapped nucleosome with FACT. Here, we use NMR to probe the histone H2A and H2B tails in the unwrapped nucleosome. Consequently, both the H2A and H2B N-tails on the pAID-proximal side bind to pAID with robust interactions, which are important for nucleosome assembly with FACT. Furthermore, the conformations of these N-tails on the distal DNA-contact site are altered from those in the canonical nucleosome. Our findings highlight that FACT both proximally and distally regulates the conformations of the H2A and H2B N-tails in the asymmetrically unwrapped nucleosome.
Collapse
|
10
|
Conroy DW, Xu Y, Shi H, Gonzalez Salguero N, Purusottam RN, Shannon MD, Al-Hashimi HM, Jaroniec CP. Probing Watson-Crick and Hoogsteen base pairing in duplex DNA using dynamic nuclear polarization solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2022; 119:e2200681119. [PMID: 35857870 PMCID: PMC9335254 DOI: 10.1073/pnas.2200681119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The majority of base pairs in double-stranded DNA exist in the canonical Watson-Crick geometry. However, they can also adopt alternate Hoogsteen conformations in various complexes of DNA with proteins and small molecules, which are key for biological function and mechanism. While detection of Hoogsteen base pairs in large DNA complexes and assemblies poses considerable challenges for traditional structural biology techniques, we show here that multidimensional dynamic nuclear polarization-enhanced solid-state NMR can serve as a unique spectroscopic tool for observing and distinguishing Watson-Crick and Hoogsteen base pairs in a broad range of DNA systems based on characteristic NMR chemical shifts and internuclear dipolar couplings. We illustrate this approach using a model 12-mer DNA duplex, free and in complex with the antibiotic echinomycin, which features two central adenine-thymine base pairs with Watson-Crick and Hoogsteen geometry, respectively, and subsequently extend it to the ∼200 kDa Widom 601 DNA nucleosome core particle.
Collapse
Affiliation(s)
- Daniel W. Conroy
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Yu Xu
- bDepartment of Chemistry, Duke University, Durham, NC 27708
| | - Honglue Shi
- bDepartment of Chemistry, Duke University, Durham, NC 27708
| | | | - Rudra N. Purusottam
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Matthew D. Shannon
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Hashim M. Al-Hashimi
- bDepartment of Chemistry, Duke University, Durham, NC 27708
- cDepartment of Biochemistry, Duke University Medical Center, Durham, NC 27710
- dDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- 1To whom correspondence may be addressed. or
| | - Christopher P. Jaroniec
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- 1To whom correspondence may be addressed. or
| |
Collapse
|
11
|
Tsunaka Y, Furukawa A, Nishimura Y. Histone tail network and modulation in a nucleosome. Curr Opin Struct Biol 2022; 75:102436. [PMID: 35863166 DOI: 10.1016/j.sbi.2022.102436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A/H2B heterodimers and one histone (H3/H4)2 tetramer, wrapped around by ∼146-bp core DNA and linker DNA. Flexible histone tails sticking out from the core undergo posttranslational modifications that are responsible for various epigenetic functions. Recently, the functional dynamics of histone tails and their modulation within the nucleosome and nucleosomal complexes have been investigated by integrating NMR, molecular dynamics simulations, and cryo-electron microscopy approaches. In particular, recent NMR studies have revealed correlations in the structures of histone N-terminal tails between H2A and H2B, as well as between H3 and H4 depending on linker DNA, suggesting that histone tail networks exist even within the nucleosome.
Collapse
Affiliation(s)
- Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
12
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Musselman CA, Kutateladze TG. Visualizing Conformational Ensembles of the Nucleosome by NMR. ACS Chem Biol 2022; 17:495-502. [PMID: 35196453 DOI: 10.1021/acschembio.1c00954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of chromatin not only compacts the eukaryotic genome into the nucleus but also provides a mechanism for the regulation of all DNA templated processes. Spatial and temporal modulation of the chromatin structure is critical in such regulation and involves fine-tuned functioning of the basic subunit of chromatin, the nucleosome. It has become apparent that the nucleosome is an inherently dynamic system, but characterization of these dynamics at the atomic level has remained challenging. NMR spectroscopy is a powerful tool for investigating the conformational ensemble and dynamics of proteins and protein complexes, and recent advances have made the study of large systems possible. Here, we review recent studies which utilize NMR spectroscopy to uncover the atomic level conformation and dynamics of the nucleosome and provide a better understanding of the importance of these dynamics in key regulatory events.
Collapse
Affiliation(s)
- Catherine A. Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
14
|
Wang ZA, Whedon SD, Wu M, Wang S, Brown EA, Anmangandla A, Regan L, Lee K, Du J, Hong JY, Fairall L, Kay T, Lin H, Zhao Y, Schwabe JWR, Cole PA. Histone H2B Deacylation Selectivity: Exploring Chromatin's Dark Matter with an Engineered Sortase. J Am Chem Soc 2022; 144:3360-3364. [PMID: 35175758 PMCID: PMC8895396 DOI: 10.1021/jacs.1c13555] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe a new method to produce histone H2B by semisynthesis with an engineered sortase transpeptidase. N-Terminal tail site-specifically modified acetylated, lactylated, and β-hydroxybutyrylated histone H2Bs were incorporated into nucleosomes and investigated as substrates of histone deacetylase (HDAC) complexes and sirtuins. A wide range of rates and site-specificities were observed by these enzyme forms suggesting distinct biological roles in regulating chromatin structure and epigenetics.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mingxuan Wu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Siyu Wang
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Edward A Brown
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ananya Anmangandla
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Liam Regan
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jianfeng Du
- The Ben May Department for Cancer Research, Chicago, Illinois 60637, United States
| | - Jun Young Hong
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Louise Fairall
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Taylor Kay
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hening Lin
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yingming Zhao
- The Ben May Department for Cancer Research, Chicago, Illinois 60637, United States
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|