1
|
Xing SF, Tian HF, Yan Z, Wang Z, Song C, Wang SG. In-situ construction of biomineralized cadmium sulfide-Rhodopseudomonas palustris hybrid system: Mechanism of synergistic light utilization. CHEMOSPHERE 2024; 364:143109. [PMID: 39151579 DOI: 10.1016/j.chemosphere.2024.143109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Sulfide biomineralization is a microorganism-induced process for transforming the environmentally hazardous cadmium into useful resource utilization. This study successfully constructed cadmium sulfide nanoparticles-Rhodopseudomonas palustris (Bio-CdS NPs-R. palustris) hybrids. For the self-assembling hybrids, Bio-CdS NPs were treated as new artificial-antennas to enhance photosynthesis, especially under low light (LL). Bacterial physiological results of hybrids were significantly increased, particularly for cells under LL, with higher enhancement photon harvesting ability. The enhancement included the pigment contents, and the ratio of the peripheral light-harvesting complex Ⅱ (LH2) to light-harvesting Ⅰ (1.33 ± 0.01 under LL), leading to the improvements of light-harvesting, transfer, and antenna conversion efficiencies. Finally, the stimulated electron chain of hybrids improved bacterial metabolism with increased nicotinamide adenine dinucleotide (NADH, 174.5% under LL) and adenosine triphosphate (ATP, 41.1% under LL). Furthermore, the modified photosynthetic units were induced by the up-regulated expression of fixK, which was activated by reduced oxygen tension of the medium for hybrids. fixK up-regulated genes encoding pigments (crt, and bch) and complexes (puf, pucAB, and pucC), leading to improved light-harvesting and transfer, and transform ability. This study provides a comprehensive understanding of the solar energy utilization mechanism of in-situ semiconductor-phototrophic microbe hybrids, contributing to further theoretical insight into their practical application.
Collapse
Affiliation(s)
- Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Hui-Fang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhe Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai, 264209, China.
| |
Collapse
|
2
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
3
|
Kim Y, Alia A, Kurle-Tucholski P, Wiebeler C, Matysik J. Electronic Structures of Radical-Pair-Forming Cofactors in a Heliobacterial Reaction Center. Molecules 2024; 29:1021. [PMID: 38474533 DOI: 10.3390/molecules29051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic reaction centers (RCs) are membrane proteins converting photonic excitations into electric gradients. The heliobacterial RCs (HbRCs) are assumed to be the precursors of all known RCs, making them a compelling subject for investigating structural and functional relationships. A comprehensive picture of the electronic structure of the HbRCs is still missing. In this work, the combination of selective isotope labelling of 13C and 15N nuclei and the utilization of photo-CIDNP MAS NMR (photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance) allows for highly enhanced signals from the radical-pair-forming cofactors. The remarkable magnetic-field dependence of the solid-state photo-CIDNP effect allows for observation of positive signals of the electron donor cofactor at 4.7 T, which is interpreted in terms of a dominant contribution of the differential relaxation (DR) mechanism. Conversely, at 9.4 T, the emissive signals mainly originate from the electron acceptor, due to the strong activation of the three-spin mixing (TSM) mechanism. Consequently, we have utilized two-dimensional homonuclear photo-CIDNP MAS NMR at both 4.7 T and 9.4 T. These findings from experimental investigations are corroborated by calculations based on density functional theory (DFT). This allows us to present a comprehensive investigation of the electronic structure of the cofactors involved in electron transfer (ET).
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
4
|
Bradley JM, Coleman AF, Brown PJ, Huang Y, Young RM, Wasielewski MR. Harvesting electrons and holes from photodriven symmetry-breaking charge separation within a perylenediimide photosynthetic model dimer. Proc Natl Acad Sci U S A 2023; 120:e2313575120. [PMID: 37983509 PMCID: PMC10691211 DOI: 10.1073/pnas.2313575120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Understanding how to utilize symmetry-breaking charge separation (SB-CS) offers a path toward increasingly efficient light-harvesting technologies. This process plays a central role in the first step of photosynthesis, in which the dimeric "special pair" of the photosynthetic reaction center enters a coherent SB-CS state after photoexcitation. Previous research on SB-CS in both biological and synthetic chromophore dimers has focused on increasing the efficiency of light-driven processes. In a chromophore dimer undergoing SB-CS, the energy of the radical ion pair product is nearly isoenergetic with that of the lowest excited singlet (S1) state of the dimer. This means that very little energy is lost from the absorbed photon. In principle, the relatively high energy electron and hole generated by SB-CS within the chromophore dimer can each be transferred to adjacent charge acceptors to extend the lifetime of the electron-hole pair, which can increase the efficiency of solar energy conversion. To investigate this possibility, we have designed a bis-perylenediimide cyclophane (mPDI2) covalently linked to a secondary electron donor, peri-xanthenoxanthene (PXX) and a secondary electron acceptor, partially fluorinated naphthalenediimide (FNDI). Upon selective photoexcitation of mPDI2, transient absorption spectroscopy shows that mPDI2 undergoes SB-CS, followed by two secondary charge transfer reactions to generate a PXX•+-mPDI2-FNDI•- radical ion pair having a nearly 3 µs lifetime. This strategy has the potential to increase the efficiency of molecular systems for artificial photosynthesis and photovoltaics.
Collapse
Affiliation(s)
- Jillian M. Bradley
- Department of Chemistry, Northwestern University, Evanston, IL60208-3113
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208-3113
| | - Adam F. Coleman
- Department of Chemistry, Northwestern University, Evanston, IL60208-3113
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208-3113
| | - Paige J. Brown
- Department of Chemistry, Northwestern University, Evanston, IL60208-3113
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208-3113
| | - Yuheng Huang
- Department of Chemistry, Northwestern University, Evanston, IL60208-3113
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208-3113
| | - Ryan M. Young
- Department of Chemistry, Northwestern University, Evanston, IL60208-3113
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208-3113
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, Evanston, IL60208-3113
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208-3113
| |
Collapse
|
5
|
Polak D, Hannon ADP, Marczak Giorio GA, Hawkins OA, Oliver TAA. The Solvent-Dependent Photophysics of Diphenyloctatetraene. J Phys Chem B 2023; 127:8199-8207. [PMID: 37708380 PMCID: PMC10544004 DOI: 10.1021/acs.jpcb.3c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Despite many decades of study, the excited state photophysics of polyenes remains controversial. In diphenylpolyenes with conjugated backbones that contain between 2 and 4 double carbon-carbon bonds, the first two excited electronic states are nearly degenerate but of entirely different character, and their energy splitting is strongly dependent on solvent polarizability. To examine the interplay between these different states, steady-state and time-resolved fluorescence spectroscopies were used to undertake a comprehensive investigation of diphenylocatetraene's (DPO) excited state dynamics in 10 solvents of different polarizabilities and polarities, ranging from weakly interacting alkanes to polar hydrogen-bonding alcohols. These data revealed that photopreparation of the optically bright 1Bu state resulted in fast (<170 ps) internal conversion to the lower-lying optically dark 2Ag state. The 2Ag state is responsible for almost all the observed DPO fluorescence and gains oscillator strength via vibronic intensity stealing with the near-degenerate 1Bu state. The fluorescence lifetime associated with the 2Ag state decayed monoexponentially (4.2-7.2 ns) in contrast to prior biexponential decay kinetics reported for similar polyenes, diphenylbutadiene and diphenylhexatriene. An analysis combining the measured fluorescence lifetimes and fluorescence quantum yields (the latter varying between 7 and 21%) allowed for a 190 cm-1 Herzberg-Teller vibronic coupling constant between the 1Bu and 2Ag states to be determined. The analysis also revealed that the ordering of electronic states remains constant in all the solvents studied, with the 2Ag state minimum always lower in energy than that of the 1Bu state, thus making it a relatively simple polyene compared to structurally similar diphenylhexatriene.
Collapse
Affiliation(s)
| | | | | | - Olivia A. Hawkins
- School of Chemistry, Cantock’s
Close, University of Bristol, Bristol, BS8 1TS, U.K.
| | - Thomas A. A. Oliver
- School of Chemistry, Cantock’s
Close, University of Bristol, Bristol, BS8 1TS, U.K.
| |
Collapse
|
6
|
Morlock S, Subramanian SK, Zouni A, Lisdat F. Closing the green gap of photosystem I with synthetic fluorophores for enhanced photocurrent generation in photobiocathodes. Chem Sci 2023; 14:1696-1708. [PMID: 36819875 PMCID: PMC9930989 DOI: 10.1039/d2sc05324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
One restriction for biohybrid photovoltaics is the limited conversion of green light by most natural photoactive components. The present study aims to fill the green gap of photosystem I (PSI) with covalently linked fluorophores, ATTO 590 and ATTO 532. Photobiocathodes are prepared by combining a 20 μm thick 3D indium tin oxide (ITO) structure with these constructs to enhance the photocurrent density compared to setups based on native PSI. To this end, two electron transfer mechanisms, with and without a mediator, are studied to evaluate differences in the behavior of the constructs. Wavelength-dependent measurements confirm the influence of the additional fluorophores on the photocurrent. The performance is significantly increased for all modifications compared to native PSI when cytochrome c is present as a redox-mediator. The photocurrent almost doubles from -32.5 to up to -60.9 μA cm-2. For mediator-less photobiocathodes, interestingly, drastic differences appear between the constructs made with various dyes. While the turnover frequency (TOF) is doubled to 10 e-/PSI/s for PSI-ATTO590 on the 3D ITO compared to the reference specimen, the photocurrents are slightly smaller since the PSI-ATTO590 coverage is low. In contrast, the PSI-ATTO532 construct performs exceptionally well. The TOF increases to 31 e-/PSI/s, and a photocurrent of -47.0 μA cm-2 is obtained. This current is a factor of 6 better than the reference made with native PSI in direct electron transfer mode and sets a new record for mediator-free photobioelectrodes combining 3D electrode structures and light-converting biocomponents.
Collapse
Affiliation(s)
- Sascha Morlock
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany .,Biophysics of Photosynthesis, Humboldt University of Berlin Philippstraße 13 10099 Berlin Germany
| | - Senthil K. Subramanian
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Athina Zouni
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Fred Lisdat
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|
7
|
Hancock AM, Swainsbury DJK, Meredith SA, Morigaki K, Hunter CN, Adams PG. Enhancing the spectral range of plant and bacterial light-harvesting pigment-protein complexes with various synthetic chromophores incorporated into lipid vesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 237:112585. [PMID: 36334507 DOI: 10.1016/j.jphotobiol.2022.112585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The Light-Harvesting (LH) pigment-protein complexes found in photosynthetic organisms have the role of absorbing solar energy with high efficiency and transferring it to reaction centre complexes. LH complexes contain a suite of pigments that each absorb light at specific wavelengths, however, the natural combinations of pigments within any one protein complex do not cover the full range of solar radiation. Here, we provide an in-depth comparison of the relative effectiveness of five different organic "dye" molecules (Texas Red, ATTO, Cy7, DiI, DiR) for enhancing the absorption range of two different LH membrane protein complexes (the major LHCII from plants and LH2 from purple phototrophic bacteria). Proteoliposomes were self-assembled from defined mixtures of lipids, proteins and dye molecules and their optical properties were quantified by absorption and fluorescence spectroscopy. Both lipid-linked dyes and alternative lipophilic dyes were found to be effective excitation energy donors to LH protein complexes, without the need for direct chemical or generic modification of the proteins. The Förster theory parameters (e.g., spectral overlap) were compared between each donor-acceptor combination and found to be good predictors of an effective dye-protein combination. At the highest dye-to-protein ratios tested (over 20:1), the effective absorption strength integrated over the full spectral range was increased to ∼180% of its natural level for both LH complexes. Lipophilic dyes could be inserted into pre-formed membranes although their effectiveness was found to depend upon favourable physicochemical interactions. Finally, we demonstrated that these dyes can also be effective at increasing the spectral range of surface-supported models of photosynthetic membranes, using fluorescence microscopy. The results of this work provide insight into the utility of self-assembled lipid membranes and the great flexibility of LH complexes for interacting with different dyes.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
8
|
Cesana PT, Page CG, Harris D, Emmanuel MA, Hyster TK, Schlau-Cohen GS. Photoenzymatic Catalysis in a New Light: Gluconobacter “Ene”-Reductase Conjugates Possessing High-Energy Reactivity with Tunable Low-Energy Excitation. J Am Chem Soc 2022; 144:17516-17521. [DOI: 10.1021/jacs.2c06344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul T. Cesana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Claire G. Page
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Megan A. Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Nandy A, Mukherjee S. A Bioinspired Light Harvesting System in Aqueous Medium: Highly Efficient Energy Transfer through the Self Assembly of β-Sheet Nanostructures of Poly-d-Lysine. J Phys Chem Lett 2022; 13:6701-6710. [PMID: 35848986 DOI: 10.1021/acs.jpclett.2c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nature has beautifully assembled its light harvesting pigments within protein scaffolds, which ensures a very high energy transfer. Designing a highly efficient artificial bioinspired light harvesting system (LHS) thus requires the nanoscale spatial orientation and electronic control of the associated chromophores. Although DNA has been used as a scaffold to organize chromophores, proteins or polypeptides, however, are very rarely explored. Here, we have developed a highly efficient, artificial, bioinspired LHS using polypeptide (poly-d-lysine, PDL) nanostructures making use of their β-sheet structure in an aqueous alkaline medium. The chromophores used herein are compatible for an energy transfer process and are nonfluorescent in an aqueous medium but exhibit high fluorescence intensity when bound to the nanostructure of PDL. The close proximity of the chromophores results in an energy transfer efficiency of ∼92% besides generating white light emission at a particular molar ratio between the chromophores.
Collapse
Affiliation(s)
- Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|