1
|
Min JW, Samanta T, Lee AY, Jung YK, Viswanath NSM, Kim YR, Cho HB, Moon JY, Jang SH, Kim JH, Im WB. Highly Emissive Lanthanide-Based 0D Metal Halide Nanocrystals for Efficient Ultraviolet Photodetector. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402951. [PMID: 38923817 DOI: 10.1002/smll.202402951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Recently, lanthanide-based 0D metal halides have attracted considerable attention for their applications in X-ray imaging, light-emitting diodes (LEDs), sensors, and photodetectors. Herein, lead-free 0D gadolinium-alloyed cesium cerium chloride (Gd3+-alloyed Cs3CeCl6) nanocrystals (NCs) are introduced as promising materials for optoelectronic application owing to their unique optical properties. The incorporation of Gd3+ in Cs3CeCl6 (CCC) NCs is proposed to increase the photoluminescence quantum yield (PLQY) from 57% to 96%, along with significantly enhanced phase and chemical stability. The structural analysis is performed by density functional theory (DFT) to confirm the effect of Gd3+ in Cs3Ce1- xGdxCl6 (CCGC) alloy system. Moreover, the CCGC NCs are applied as the active layer in UVPDs with different Gd3+ concentration. The excellent device performance is shown at 20% of Gd3+ in CCGC NCs with high detectivity (7.938 × 1011 Jones) and responsivity (0.195 A W-1) at -0.1 V at 310 nm. This study paves the way for the development of lanthanide-based metal halide NCs for next-generation UVPDs and other optoelectronic applications.
Collapse
Affiliation(s)
- Jeong Wan Min
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Tuhin Samanta
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ah Young Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Young-Kwang Jung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | | | - Yu Ri Kim
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Han Bin Cho
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ji Yoon Moon
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Se Hyuk Jang
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Righetto M, Caicedo-Dávila S, Sirtl MT, Lim VJY, Patel JB, Egger DA, Bein T, Herz LM. Alloying Effects on Charge-Carrier Transport in Silver-Bismuth Double Perovskites. J Phys Chem Lett 2023; 14:10340-10347. [PMID: 37948051 PMCID: PMC10683067 DOI: 10.1021/acs.jpclett.3c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Alloying is widely adopted for tuning the properties of emergent semiconductors for optoelectronic and photovoltaic applications. So far, alloying strategies have primarily focused on engineering bandgaps rather than optimizing charge-carrier transport. Here, we demonstrate that alloying may severely limit charge-carrier transport in the presence of localized charge carriers (e.g., small polarons). By combining reflection-transmission and optical pump-terahertz probe spectroscopy with first-principles calculations, we investigate the interplay between alloying and charge-carrier localization in Cs2AgSbxBi1-xBr6 double perovskite thin films. We show that the charge-carrier transport regime strongly determines the impact of alloying on the transport properties. While initially delocalized charge carriers probe electronic bands formed upon alloying, subsequently self-localized charge carriers probe the energetic landscape more locally, thus turning an alloy's low-energy sites (e.g., Sb sites) into traps, which dramatically deteriorates transport properties. These findings highlight the inherent limitations of alloying strategies and provide design tools for newly emerging and highly efficient semiconductors.
Collapse
Affiliation(s)
- Marcello Righetto
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Sebastián Caicedo-Dávila
- Physics
Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, Garching 85748 Germany
| | - Maximilian T. Sirtl
- Department
of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstr. 11, 81377 Munich, Germany
| | - Vincent J.-Y. Lim
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Jay B. Patel
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - David A. Egger
- Physics
Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, Garching 85748 Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstr. 11, 81377 Munich, Germany
| | - Laura M. Herz
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Institute
for Advanced Study, Technical University
of Munich, Lichtenbergstrasse
2a, D-85748 Garching, Germany
| |
Collapse
|
3
|
Huang X, Sun HT, Shirahata N. Highly efficient, self-powered UV photodiodes based on leadfree perovskite nanocrystals through interfacial engineering. NANOTECHNOLOGY 2023; 35:035701. [PMID: 37905410 DOI: 10.1088/1361-6528/ad0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
Double perovskite crystals are promising alternatives for lead-based perovskites that has potential to address toxicity and instability issues. In this study, Cs2AgBiCl6nanocrystals (NCs) with high absorption coefficients were synthesized by hot-injection method. The bandgap engineering was realized by tuning the halide composition in Cs2AgBiCl6to Cs2AgBiBr6. Both NCs were used as light-absorbing layers in lead-free perovskite photodiodes that exhibit wavelength-selectivity for UV-visible light operatable even at a bias voltage of 0 V. Cs2AgBiBr6-based photodiode exhibits a characteristic detection peak at 340 nm with a responsivity of 3.21 mA W-1, a specific detectivity up to 8.91 × 1010Jones and a fast response speed with a rise/fall time of 30/35 ms. The excellent performance of self-driven photodiodes lights up the prospect of lead-free perovskite NCs in highly efficient optoelectronic devices.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-0814, Japan
| | - Hong-Tao Sun
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-0814, Japan
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
- CNRS-Saint-Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
Perveen A, Movsesyan A, Abubakar SM, Saeed F, Hussain S, Raza A, Xu Y, Subramanian A, Khan Q, Lei W. In-situ Fabricated and Plasmonic Enhanced MACsPbBr3-Polymer Composite Perovskite Film Based UV Photodetector. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Ghosh J, Sellin PJ, Giri PK. Recent advances in lead-free double perovskites for x-ray and photodetection. NANOTECHNOLOGY 2022; 33:312001. [PMID: 35443239 DOI: 10.1088/1361-6528/ac6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Over the last decade, lead halide perovskites have attracted significant research attention in the field of photovoltaics, light-emitting devices, photodetection, ionizing radiation detection, etc, owing to their outstanding optoelectrical properties. However, the commercial applications of lead-based perovskite devices are restricted due to the poor ambient stability and toxicity of lead. The encapsulation of lead-based devices can reduce the possible leakage of lead. However, it is hard to ensure safety during large-scale production and long-term storage. Recently, considerable efforts have been made to design lead-free perovskites for different optoelectronic applications. Metal halide double perovskites with the general formula of A2MIMIIIX6or A2MIVX6could be potentially considered as green and stable alternatives for different optoelectronic applications. In this review article, we focus on the recent progress and findings on lead-free halide double perovskites for x-ray and UV-vis photodetection applications. Lead-free halide double perovskite has recently drawn a great deal of attention for superior x-ray detection due to its high absorption coefficient, large carrier mobility-lifetime product, and large bulk resistance. In addition, these materials exhibit good performance in photodetection in the UV-vis region due to high photocarrier generation and efficient carrier separation. In this review, first, we define the characteristics of lead-free double perovskite materials. The fundamental characteristics and beneficial properties of halide perovskites for direct and indirect x-ray detection are then discussed. We comprehensively review recent developments and efforts on lead-free double perovskite for x-ray detection and UV-vis photodetection. We bring out the current challenges and opportunities in the field and finally present the future outlook for developing lead-free double perovskite-based x-ray and UV-vis photodetectors for practical applications.
Collapse
Affiliation(s)
- Joydip Ghosh
- Department of Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - P J Sellin
- Department of Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, India
| |
Collapse
|
6
|
Li W, Liu Y, Huang X, Jiang S, Zhao C, Mai W. Interfacial Gradient-Energy-Band-Alignment Modulation via a Vapor-Phase Anion-Exchange Reaction toward Lead-Free Perovskite Photodetectors with Excellent UV Imaging Capability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53194-53201. [PMID: 34719922 DOI: 10.1021/acsami.1c15635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bi-based inorganic perovskites have attracted great attention in optoelectronics, as they feature similar photoelectric properties but have high stability and lead-free merits. Unfortunately, due to the high exciton binding energy and small Bohr radius, their photodetection performance still largely lags behind that of Pb-based counterparts. Herein, using a vapor-phase chloride ion-substitution strategy, Cs3Bi2Br9 photodetectors (PDs) with gradient energy band alignment were delicately modulated, contributing to a high carrier separation/collection efficiency. The optimized Bi-based perovskite ACCT (Al2O3/Cs3Bi2Br9/Cs3Bi2ClxBr9-x/TiO2) PDs exhibit outstanding performance, the ON/OFF ratio and linear dynamic range (LDR) are significantly improved by 20 and 2.6 times, respectively. Significantly, we further demonstrate the high-SNR (signal-to-noise ratio) UV imaging based on the optimized device, which shows 21.887 dB higher than that of the pristine device. Finally, the vapor-phase anion-exchange modified perovskite PDs show long-term stability and high UV resistance. Vapor-phase ion-substitution is a promising approach for the synergistic effect of matched energy band alignment and interface passivation, which can be applied to other perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Wanjun Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yujin Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xinyue Huang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Shaowei Jiang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Chuanxi Zhao
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
7
|
Zhan X, Zhang X, Liu Z, Chen C, Kong L, Jiang S, Xi S, Liao G, Liu X. Boosting the Performance of Self-Powered CsPbCl 3-Based UV Photodetectors by a Sequential Vapor-Deposition Strategy and Heterojunction Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45744-45757. [PMID: 34545739 DOI: 10.1021/acsami.1c15013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All-inorganic CsPbCl3 perovskite in ultraviolet (UV) detection is drawing increasing interest owing to its UV-matchable optical band gap, ultrahigh UV stability, and superior inherent optoelectronic properties. Almost all of the reported CsPbCl3 photodetectors employ CsPbCl3 nano- or microstructures as sensitive components, while CsPbCl3 polycrystalline film-based self-powered photodetectors are rarely studied on account of the terrible precursor solubility. Herein, a novel sequential vapor-deposition technique is demonstrated to fabricate CsPbCl3 polycrystalline film for the first time. High-quality CsPbCl3 films with excellent optical, electronic, and morphological features are obtained. A self-powered photodetector based on the CsPbCl3 film is constructed without any charge transport layer, showing a high UV detection performance. A thin p-type PbS buffer layer is further introduced to passivate the surface defects of the CsPbCl3 layer and decrease the interfacial energy barrier by forming a type-II heterojunction, contributing to a faster hole extraction rate and a suppressed dark current level. The best-performing device achieves an ultrafast response time of 1.92 μs, an ultrahigh on/off ratio of 2.22 × 105, and a responsivity of 0.22 A/W upon 375 nm UV illumination at 0 V bias. This comprehensive performance is the best among all of the CsPbCl3 photodetectors reported to date. The as-prepared photodetectors also present an eminent UV irradiation and long-term durability in ambient air. Furthermore, a large-area and uniform 625-pixel UV image sensor is fabricated and attains a prominent imaging capability. Our work opens a new avenue for the scalable production of CsPbCl3-based optoelectronics.
Collapse
Affiliation(s)
- Xiaobin Zhan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuning Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiyong Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingxian Kong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shulan Jiang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Shuang Xi
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guanglan Liao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingyue Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| |
Collapse
|
8
|
Wu Y, Chu W, Vasenko AS, Prezhdo OV. Common Defects Accelerate Charge Carrier Recombination in CsSnI 3 without Creating Mid-Gap States. J Phys Chem Lett 2021; 12:8699-8705. [PMID: 34472876 DOI: 10.1021/acs.jpclett.1c02443] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead-free metal halide perovskites are environmentally friendly and have favorable electro-optical properties; however, their efficiencies are significantly below the theoretical limit. Using ab initio nonadiabatic molecular dynamics, we show that common intrinsic defects accelerate nonradiative charge recombination in CsSnI3 without creating midgap traps. This is in contrast to Pb-based perovskites, in which many defects have little influence on and even prolong carrier lifetimes. Sn-related defects, such as Sn vacancies and replacement of Sn with Cs are most detrimental, since Sn removal breaks the largest number of bonds and strongly perturbs the Sn-I lattice that supports the carriers. The defects increase the nonadiabatic electron-vibrational coupling and interact strongly with free carrier states. Point defects associated with I atoms are less detrimental, and therefore, CsSnI3 synthesis should be performed in Sn rich conditions. The study provides an atomistic rationalization of why lead-free CsSnI3 exhibits lower photovoltaic efficiency compared to some lead-based perovskites.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|