1
|
Yoon TJ, Bell IH. Linking excess entropy and acentric factor in spherical fluids. J Chem Phys 2024; 161:104301. [PMID: 39248233 DOI: 10.1063/5.0216126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Introduced by Pitzer in 1955, the acentric factor (ω) has been used to evaluate a molecule's deviation from the corresponding state principle. Pitzer devised ω based on a concept called perfect liquid (or centric fluid), a hypothetical species perfectly adhering to this principle. However, its physical significance remains unclear. This work attempts to clarify the centric fluid from an excess entropy perspective. We observe that the excess entropy per particle of centric fluids approximates -kB at their critical points, akin to the communal entropy of an ideal gas in classical cell theory. We devise an excess entropy dissection and apply it to model fluids (square-well, Lennard-Jones, Mie n-6, and the two-body ab initio models) to interpret this similarity. The dissection method identifies both centricity-independent and centricity-dependent entropic features. Regardless of the acentric factor, the attractive interaction contribution to the excess entropy peaks at the density where local density is most enhanced due to the competition between the local attraction and critical fluctuations. However, only in centric fluids does the entropic contribution from the local attractive potential become comparable to that of the hard sphere exclusion, making the centric fluid more structured than acentric ones. These findings elucidate the physical significance of the centric fluid as a system of particles where the repulsive and attractive contributions to the excess entropy become equal at its gas-liquid criticality. We expect these findings to offer a way to find suitable intermolecular potentials and assess the physical adequacy of equations of state.
Collapse
Affiliation(s)
- Tae Jun Yoon
- School of Transdisciplinary Innovations, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
2
|
Ranieri U, Formisano F, Gorelli FA, Santoro M, Koza MM, De Francesco A, Bove LE. Crossover from gas-like to liquid-like molecular diffusion in a simple supercritical fluid. Nat Commun 2024; 15:4142. [PMID: 38755136 PMCID: PMC11099187 DOI: 10.1038/s41467-024-47961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
According to textbooks, no physical observable can be discerned allowing to distinguish a liquid from a gas beyond the critical point. Yet, several proposals have been put forward challenging this view and various transition boundaries between a gas-like and a liquid-like behaviour, including the so-called Widom and Frenkel lines, and percolation line, have been suggested to delineate the supercritical state space. Here we report observation of a crossover from gas-like (Gaussian) to liquid-like (Lorentzian) self-dynamic structure factor by incoherent quasi-elastic neutron scattering measurements on supercritical fluid methane as a function of pressure, along the 200 K isotherm. The molecular self-diffusion coefficient was derived from the best Gaussian (at low pressures) or Lorentzian (at high pressures) fits to the neutron spectra. The Gaussian-to-Lorentzian crossover is progressive and takes place at about the Widom line intercept (59 bar). At considerably higher pressures, a liquid-like jump diffusion mechanism properly describes the supercritical fluid on both sides of the Frenkel line. The present observation of a gas-like to liquid-like crossover in the self dynamics of a simple supercritical fluid confirms emerging views on the unexpectedly complex physics of the supercritical state, and could have planet-wide implications and possible industrial applications in green chemistry.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Roma, 00187, Italy
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Ferdinando Formisano
- CNR - Istituto Officina dei Materiali (IOM), Grenoble, INSIDE@ILL, 71 Avenue des Martyrs, Grenoble, Cedex 9, France.
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France.
| | - Federico A Gorelli
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Shanghai, 201203, China.
- Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai, 201203, China.
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy.
| | - Mario Santoro
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy
- European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy
| | - Michael Marek Koza
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
| | - Alessio De Francesco
- CNR - Istituto Officina dei Materiali (IOM), Grenoble, INSIDE@ILL, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Roma, 00187, Italy
- Laboratory of Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 5 Place Jussieu, Paris, 75005, France
| |
Collapse
|
3
|
Saric D, Bell IH, Guevara-Carrion G, Vrabec J. Influence of repulsion on entropy scaling and density scaling of monatomic fluids. J Chem Phys 2024; 160:104503. [PMID: 38456532 DOI: 10.1063/5.0196592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
Entropy scaling is applied to the shear viscosity, self-diffusion coefficient, and thermal conductivity of simple monatomic fluids. An extensive molecular dynamics simulation series is performed to obtain these transport properties and the residual entropy of three potential model classes with variable repulsive exponents: n, 6 Mie (n = 9, 12, 15, and 18), Buckingham's exponential-six (α = 12, 14, 18, and 30), and Tang-Toennies (αT = 4.051, 4.275, and 4.600). A wide range of liquid and supercritical gas- and liquid-like states is covered with a total of 1120 state points. Comparisons to equations of state, literature data, and transport property correlations are made. Although the absolute transport property values within a given potential model class may strongly depend on the repulsive exponent, it is found that the repulsive steepness plays a negligible role when entropy scaling is applied. Hence, the plus-scaled transport properties of n, 6 Mie, exponential-six, and Tang-Toennies fluids lie basically on one master curve, which closely corresponds with entropy scaling correlations for the Lennard-Jones fluid. This trend is confirmed by literature data of n, 6 Mie, and exponential-six fluids. Furthermore, entropy scaling holds for state points where the Pearson correlation coefficient R is well below 0.9. The condition R > 0.9 for strongly correlating liquids is thus not necessary for the successful application of entropy scaling, pointing out that isomorph theory may be a part of a more general framework that is behind the success of entropy scaling. Density scaling reveals a strong influence of the repulsive exponent on this particular approach.
Collapse
Affiliation(s)
- Denis Saric
- Thermodynamics, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | | | - Jadran Vrabec
- Thermodynamics, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| |
Collapse
|
4
|
Yu N, Huang D, Lu S, Khrapak S, Feng Y. Universal scaling of transverse sound speed and its isomorphic property in Yukawa fluids. Phys Rev E 2024; 109:035202. [PMID: 38632806 DOI: 10.1103/physreve.109.035202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
Molecular dynamical simulations are performed to investigate the scaling of the transverse sound speed in two-dimensional (2D) and 3D Yukawa fluids. From the calculated diagnostics of the radial distribution function, the mean-squared displacement, and the Pearson correlation coefficient, the approximate isomorphic curves for 2D and 3D liquidlike Yukawa systems are obtained. It is found that the structure and dynamics of 2D and 3D liquidlike Yukawa systems exhibit the isomorphic property under the conditions of the same relative coupling parameter Γ/Γ_{m}=const. It is demonstrated that the reduced transverse sound speed, i.e., the ratio of the transverse sound speed to the thermal speed, is an isomorph invariant, which is a quasiuniversal function of Γ/Γ_{m}. The obtained isomorph invariant of the reduced transverse sound speed can be useful to estimate the transverse sound speed, or determine the coupling strength, with applications to dusty (complex) plasma or colloidal systems.
Collapse
Affiliation(s)
- Nichen Yu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shaoyu Lu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Sergey Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
5
|
Sheydaafar Z, Dyre JC, Schrøder TB. Scaling Properties of Liquid Dynamics Predicted from a Single Configuration: Small Rigid Molecules. J Phys Chem B 2023; 127:3478-3487. [PMID: 37040433 DOI: 10.1021/acs.jpcb.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Isomorphs are curves in the thermodynamic phase diagram along which structure and dynamics are invariant to a good approximation. There are two main ways to trace out isomorphs, the configurational-adiabat method and the direct-isomorph-check method. Recently a new method based on the scaling properties of forces was introduced and shown to work very well for atomic systems [T. B. Schrøder, Phys. Rev. Lett. 2022, 129, 245501]. A unique feature of this method is that it only requires a single equilibrium configuration for tracing out an isomorph. We here test generalizations of this method to molecular systems and compare to simulations of three simple molecular models: the asymmetric dumbbell model of two Lennard-Jones spheres, the symmetric inverse-power-law dumbbell model, and the Lewis-Wahnström o-terphenyl model. We introduce and test two force-based and one torque-based methods, all of which require just a single configuration for tracing out an isomorph. Overall, the method based on requiring invariant center-of-mass reduced forces works best.
Collapse
Affiliation(s)
- Zahraa Sheydaafar
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
6
|
Crossover Residual Entropy Scaling of the Viscosity and Thermal Conductivity of Carbon Dioxide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Bolmatov D. The Phonon Theory of Liquids and Biological Fluids: Developments and Applications. J Phys Chem Lett 2022; 13:7121-7129. [PMID: 35950307 DOI: 10.1021/acs.jpclett.2c01779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among the three basic states of matter (solid, liquid, and gas), the liquid state has always eluded general theoretical approaches for describing liquid energy and heat capacity. In this Viewpoint, we derive the phonon theory of liquids and biological fluids stemming from Frenkel's microscopic picture of the liquid state. Specifically, the theory predicts the existence of phonon gaps in vibrational spectra of liquids and a thermodynamic boundary in the supercritical state. Direct experimental evidence reaffirming these theoretical predictions was achieved through a combination of techniques using static compression X-ray diffraction and inelastic X-ray scattering on deeply supercritical argon in a diamond anvil cell. Furthermore, these findings inspired and then led to the discovery of phonon gaps in liquid crystals (mesogens), block copolymers, and biological membranes. Importantly, phonon gaps define viscoelastic crossovers in cellular membranes responsible for lipid self-diffusion, lateral molecular-level stress propagation, and passive transmembrane transport of small molecules and solutes. Finally, molecular interactions mediated by external stimuli result in synaptic activity controlling biological membranes' plasticity resulting in learning and memory. Therefore, we also discuss learning and memory effects─equally important for neuroscience as well as for the development of neuromorphic devices─facilitated in biological membranes by external stimuli.
Collapse
Affiliation(s)
- Dima Bolmatov
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Abstract
Active-matter systems feature discrete particles that can convert stored or ambient free energy into motion. To realize the engineering potential of active matter, there is a strong need for predictive and theoretically grounded techniques for describing transport in these systems. In this work, we perform molecular-dynamics (MD) simulations of a model active-matter system, in which we vary the total fraction of active particles (0.01 ≤ ϕ ≤ 0.5) as well as the degree of activity of the active particles. These simulations reveal a fascinating array of transport phenomena, including activity-enhanced diffusion coefficients. By adapting an existing result for binary (inactive) fluids, we demonstrate the existence of an excess entropy scaling relation in an active system. This relationship is well supported by our MD results and establishes a new connection between transport (dynamics) and structure (statics) in active matter, a promising step for predictive and generalizable models of other transport phenomena in such systems.
Collapse
Affiliation(s)
- S Arman Ghaffarizadeh
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gerald J Wang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Khrapak SA, Khrapak A. Freezing density scaling of fluid transport properties: Application to liquified noble gases. J Chem Phys 2022; 157:014501. [DOI: 10.1063/5.0096947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A freezing density scaling of transport properties of the Lennard-Jones fluid is rationalized in terms of the Rosenfeld's excess entropy scaling and isomorph theory of Roskilde-simple systems. Then, it is demonstrated that the freezing density scaling operates reasonably well for viscosity and thermal conductivity coefficients of liquid argon, krypton, and xenon. Quasi-universality of the reduced transport coefficients at their minima and at freezing conditions is discussed. The magnitude of the thermal conductivity coefficient at the freezing point is shown to agree remarkably well with the prediction of the vibrational model of thermal transport in dense fluids.
Collapse
Affiliation(s)
- Sergey A. Khrapak
- Complex Plasma, FSBSI Joint Institute for High Temperatures of the Russian Academy of Sciences, Russia
| | - Alexey Khrapak
- Theoretical Department, Joint Institute for High Temperatures RAS, Russia
| |
Collapse
|
10
|
Hoang H, Galliero G. Predicting thermodiffusion in simple binary fluid mixtures. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:42. [PMID: 35507140 DOI: 10.1140/epje/s10189-022-00197-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The predictive capabilities of some existing theoretical models to quantify thermodiffusion have been investigated in this work. To do so, the tests have been performed on two model fluids, the hard-sphere and the Lennard-Jones (including spheres and dimers) ones, exploring different mixtures and thermodynamic conditions thanks to extensive molecular simulations. It has been confirmed that the thermal diffusion factor should be expressed as the sum of one term related to the isotope effect and one term related to the "chemical" effects and that a kinetic term is required to quantify thermodiffusion from the gas state to the liquid state. In addition, regarding the isotope effects, it has been obtained that none of the available theoretical models are able to yield a reasonable prediction relatively to the molecular simulations results and that the moment of inertia contribution is one order of magnitude smaller than the mass contribution in the liquid state. Finally, concerning the chemical effects, it has been shown the Shukla and Firoozabadi model, complemented with a kinetic term, is probably the most reasonable option to estimate the chemical contribution to the thermal diffusion factor, even if it fails in capturing the effect of the asymmetry in size and in shape between the species. Overall, this works confirms that there is still a lack of a generic model able to predict accurately thermal diffusion factors, or equivalently Soret coefficient, in simple binary mixtures from the gas state to the liquid state.
Collapse
Affiliation(s)
- Hai Hoang
- Institute of Fundamental and Applied Sciences, Duy Tan University, 6 Tran Nhat Duat Street, District 1, Ho Chi Minh City, 700000, Viet Nam
- Faculty of Environmental and Natural Sciences, Duy Tan University, 03 Quang Trung Street, Da Nang, Vietnam
| | - Guillaume Galliero
- Laboratoire des Fluides Complexes et leurs Réservoirs (UMR-5150 with CNRS, and TotalEnergies), Université de Pau et des Pays de l'Adour, BP 1155, 64013, Pau Cedex, France.
| |
Collapse
|
11
|
Khrapak SA, Khrapak AG. Freezing Temperature and Density Scaling of Transport Coefficients. J Phys Chem Lett 2022; 13:2674-2678. [PMID: 35302377 DOI: 10.1021/acs.jpclett.2c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is demonstrated that the freezing density scaling of transport coefficients in fluids, similar to the freezing temperature scaling, originates from the quasi-universal excess entropy scaling approach proposed by Rosenfeld. The freezing density scaling has a considerably wider applicability domain on the phase diagram of Lennard-Jones and related systems. As an illustration of its predictive power, we show that it reproduces with an excellent accuracy the shear viscosity coefficients of saturated liquid argon, krypton, xenon, and methane.
Collapse
Affiliation(s)
- S A Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - A G Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
12
|
Abstract
It is demonstrated that the crossover between gas- and liquid-like regions on the phase diagram of the Lennard-Jones system occurs at a fixed value of the density divided by its value at the freezing point, ρ/ ρfr ≃ 0.35. This definition is consistent with other definitions proposed recently. As a result, a very simple practical expression for the gas-to-liquid crossover line emerges.
Collapse
Affiliation(s)
- S. A. Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
13
|
Liu M, Tang J, Liu S, Xi D, Min L, Zang J, Liu G, Wang J, Huang S, Huang Y. Modified Landau model for fluids: A rethink of pseudoboiling theory for supercritical fluids. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|