1
|
Krupová M, Leszczenko P, Sierka E, Hamplová SE, Klepetářová B, Pelc R, Andrushchenko V. Vibrational circular dichroism of adenosine crystals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124381. [PMID: 38838602 DOI: 10.1016/j.saa.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
Adenosine is one of the building blocks of nucleic acids and other biologically important molecules. Spectroscopic methods have been among the most utilized techniques to study adenosine and its derivatives. However, most of them deal with adenosine in solution. Here, we present the first vibrational circular dichroism (VCD) spectroscopic study of adenosine crystals in solid state. Highly regular arrangement of adenosine molecules in a crystal resulted in a strongly enhanced supramolecular VCD signal originating from long-range coupling of vibrations. The data suggested that adenosine crystals, in contrast to guanosine ones, do not imbibe atmospheric water. Relatively large dimensions of the adenosine crystals resulted in scattering and substantial orientational artifacts affecting the spectra. Several strategies for tackling the artifacts have been proposed and tested. Atypical features in IR absorption spectra of crystalline adenosine (e.g., extremely low absorption in mid-IR spectral range) were observed and attributed to refractive properties of adenosine crystals.
Collapse
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Patrycja Leszczenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewa Sierka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sára Emma Hamplová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Radek Pelc
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 10000 Prague, Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| |
Collapse
|
2
|
Sklenář A, Růžičková L, Schrenková V, Bednárová L, Pazderková M, Chatziadi A, Zmeškalová Skořepová E, Šoóš M, Kaminský J. Solid-state vibrational circular dichroism for pharmaceutical applications: Polymorphs and cocrystal of sofosbuvir. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124478. [PMID: 38788502 DOI: 10.1016/j.saa.2024.124478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
X-ray diffraction is a commonly used technique in the pharmaceutical industry for the determination of the atomic and molecular structure of crystals. However, it is costly, sometimes time-consuming, and it requires a considerable degree of expertise. Vibrational circular dichroism (VCD) spectroscopy resolves these limitations, while also exhibiting substantial sensitivity to subtle modifications in the conformation and molecular packaging in the solid state. This study showcases VCD's ability to differentiate between various crystal structures of the same molecule (polymorphs, cocrystals). We examined the most effective approach for producing high-quality spectra and unveiled the intricate link between structure and spectrum via quantum-chemical computations. We rigorously assessed, using alanine as a model compound, multiple experimental conditions on the resulting VCD spectra, with the aim of proposing an optimal and efficient procedure. The proposed approach, which yields reliable, reproducible, and artifact-free results with maximal signal-to-noise ratio, was then validated using a set comprising of three amino acids (serine, alanine, tyrosine), one hydroxy acid (tartaric acid), and a monosaccharide (ribose) to mimic active pharmaceutical components. Finally, the optimized approach was applied to distinguish three polymorphs of the antiviral drug sofosbuvir and its cocrystal with piperazine. Our results indicate that solid-state VCD is a prompt, cost-effective, and easy-to-use technique to identify crystal structures, demonstrating potential for application in pharmaceuticals. We also adapted the cluster and transfer approach to calculate the spectral properties of molecules in a periodic crystal environment. Our findings demonstrate that this approach reliably produces solid-state VCD spectra of model compounds. Although for large molecules with many atoms per unit cell, such as sofosbuvir, this approach has to be simplified and provides only a qualitative match, spectral calculations, and energy analysis helped us to decipher the observed differences in the experimental spectra of sofosbuvir.
Collapse
Affiliation(s)
- Adam Sklenář
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám.2, Prague 166 10, Czech Republic; University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic
| | - Lucie Růžičková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám.2, Prague 166 10, Czech Republic; Imperial College London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Věra Schrenková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám.2, Prague 166 10, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám.2, Prague 166 10, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám.2, Prague 166 10, Czech Republic
| | - Argyro Chatziadi
- University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic
| | - Eliška Zmeškalová Skořepová
- University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic; Institute of Physics of the CAS, Na Slovance 1999/2, Prague 182 21, Czech Republic
| | - Miroslav Šoóš
- University of Chemistry and Technology, Prague, Technická 5, Prague 166 28, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám.2, Prague 166 10, Czech Republic.
| |
Collapse
|
3
|
Pescitelli G, Di Bari L. The Phenomenon of Vibrational Circular Dichroism Enhancement: A Systematic Survey of Literature Data. J Phys Chem B 2024; 128:9043-9060. [PMID: 39279667 DOI: 10.1021/acs.jpcb.4c04143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
While the intensity of vibrational circular dichroism (VCD) signals is commonly 104-105 times smaller than that of corresponding IR signals, several kinds of systems display enhanced VCD spectra with g-values (VCD/IR intensity ratio) above 10-3 and even reaching 5 × 10-2 in some exceptional cases. These systems include transition metal and lanthanide complexes, protein and peptide fibrils, short oligopeptide gels, crystalline compounds, gels and solution aggregates of organic compounds. We review the literature on VCD enhancement, focusing on collecting and analyzing data on enhanced g-values. Special attention is given to the mechanisms proposed to produce these effects.
Collapse
Affiliation(s)
- Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| |
Collapse
|
4
|
Bloino J, Jähnigen S, Merten C. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. J Phys Chem Lett 2024; 15:8813-8828. [PMID: 39167088 DOI: 10.1021/acs.jpclett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
VCD research continues to thrive, driven by ongoing experimental and theoretical advances. Modern studies deal with increasingly complex samples featuring weak intermolecular interactions and shallow potential energy surfaces. Likewise, the combination of VCD measurements with, for instance, cryo-spectroscopic techniques has significantly increased their sensitivity. The extent to which such modern measurements enhance the informative value of VCD depends significantly on the quality of the theoretical models, which must adequately account for anharmonicity, solvation and molecular dynamics. We herein discuss how experimental advancements engage in a stimulating interplay with recent theoretical developments, pursuing either the static or the dynamic computational route. Both paths have their own strengths and limitations, each addressing fundamentally different problems. We give an outlook on future challenges of VCD research, including the possibility to combine static and dynamic approaches to obtain a full picture of the sample.
Collapse
Affiliation(s)
- Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sascha Jähnigen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Arnimallee 22, 14195 Berlin, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
5
|
Schreder L, Luber S. Chiral Spectroscopy of Bulk Systems with Propagated Localized Orbitals. J Chem Theory Comput 2024; 20:3894-3910. [PMID: 38661175 DOI: 10.1021/acs.jctc.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We present approaches for the simulation of electronic circular dichroism, Raman, and Raman optical activity (ROA) spectra for isolated and periodic systems as well as subsystem analysis thereof. The method is based on the use of time-dependent maximally localized Wannier functions in the CP2K package and accounts for origin dependencies inherent to the Gaussian and plane wave with pseudopotentials approach as well as the origin dependence of the magnetic dipole and electric quadrupole operators. Tests on the H-bonded enantiomers of alanine by harmonic normal-mode analysis and on an aqueous solution of l-alanine by ab initio molecular dynamics obeying periodic boundary conditions (PBCs) are presented as total and subsystem-resolved spectra. To our knowledge, this is the first instance of an ROA spectrum derived from real-time propagation obeying PBCs and the first ROA simulation considering off-, pre-, and on-resonance effects within PBCs.
Collapse
Affiliation(s)
- Lukas Schreder
- University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
6
|
Bowles J, Jähnigen S, Agostini F, Vuilleumier R, Zehnacker A, Calvo F, Clavaguéra C. Vibrational Circular Dichroism Spectroscopy with a Classical Polarizable Force Field: Alanine in the Gas and Condensed Phases. Chemphyschem 2024; 25:e202300982. [PMID: 38318765 DOI: 10.1002/cphc.202300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
Polarizable force fields are an essential component for the chemically accurate modeling of complex molecular systems with a significant degree of fluxionality, beyond harmonic or perturbative approximations. In this contribution we examine the performance of such an approach for the vibrational spectroscopy of the alanine amino acid, in the gas and condensed phases, from the Fourier transform of appropriate time correlation functions generated along molecular dynamics (MD) trajectories. While the infrared (IR) spectrum only requires the electric dipole moment, the vibrational circular dichroism (VCD) spectrum further requires knowledge of the magnetic dipole moment, for which we provide relevant expressions to be used with polarizable force fields. The AMOEBA force field was employed here to model alanine in the neutral and zwitterionic isolated forms, solvated by water or nitrogen, and as a crystal. Within this framework, comparison of the electric and magnetic dipole moments to those obtained with nuclear velocity perturbation theory based on density-functional theory for the same MD trajectories are found to agree well with one another. The statistical convergence of the IR and VCD spectra is examined and found to be more demanding in the latter case. Comparisons with experimental frequencies are also provided for the condensed phases.
Collapse
Affiliation(s)
- Jessica Bowles
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Sascha Jähnigen
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Anne Zehnacker
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR8214, 91405, Orsay, France
| | - Florent Calvo
- Université Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| |
Collapse
|
7
|
Rode JE, Wasilczenko J, Górecki M. Differentiation of solvatomorphs of active pharmaceutical ingredients (API) by solid-state vibrational circular dichroism (VCD). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123851. [PMID: 38295593 DOI: 10.1016/j.saa.2024.123851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Here, we present the new application of solid-state Vibrational Circular Dichroism (VCD) spectroscopy to differentiate several dutasteride (DS) solvatomorphs - the model active pharmaceutical ingredient (API). Several crystalline DS hydrochloride hydrates solvated with methanol, ethanol, acetonitrile, acetone, and acetic acid were prepared. In contrast to almost identical IR spectra, the VCD ones were very sensitive to changes in the sample composition. We marked significant differences in the shape of VCD spectra of studied DS solvatomorphs, DS hydrates, and DS polymorphic forms. Our findings, supported by DFT calculations, show that VCD spectroscopy has the pronounced ability to distinguish their crystal arrangements. We believe that this contribution will extend the use of VCD in the pharmaceutical industry for developing and designing new chiral drug products for the identification, description, and in-depth probing of several pharmaceutical solvatomorphs in the future.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Justyna Wasilczenko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland.
| |
Collapse
|
8
|
Dupont J, Hartwig B, Le Barbu-Debus K, Lepere V, Guillot R, Suhm MA, Zehnacker A. Homochiral vs. heterochiral preference in chiral self-recognition of cyclic diols. Phys Chem Chem Phys 2024; 26:10610-10621. [PMID: 38506638 DOI: 10.1039/d4cp00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The structure and clustering propensity of a chiral derivative of cis-1,2-cyclohexanediol, namely, 1-phenyl-cis-1,2-cyclohexanediol (cis-PCD), has been studied under supersonic expansion conditions by combining laser spectroscopy with quantum chemistry calculations. The presence of the phenyl substituent induces conformational locking relative to cis-1,2-cyclohexanediol (cis-CD), and only one conformer of the bare molecule is observed by both Raman and IR-UV double resonance spectroscopy. The homochiral preference inferred for the dimer formation at low enough temperature is in line with the formation of a conglomerate in the solid state. The change in clustering propensity in cis-PCD relative to trans-1,2-cyclohexanediol (trans-CD), which shows heterochiral preference, is explained by the presence of the phenyl substituent rather than the effect of cis-trans isomerism. Indeed the transiently chiral cis-CD also forms preferentially heterodimers, whose structure is very close to that of the corresponding trans-CD dimer.
Collapse
Affiliation(s)
- Jennifer Dupont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, rue André Rivière, Université Paris-Saclay, F-91405 Orsay, France.
| | - Beppo Hartwig
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, rue André Rivière, Université Paris-Saclay, F-91405 Orsay, France.
| | - Valeria Lepere
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, rue André Rivière, Université Paris-Saclay, F-91405 Orsay, France.
| | - Regis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 17 Av. des Sciences Université Paris-Saclay, F-91405 Orsay, France
| | - Martin A Suhm
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, rue André Rivière, Université Paris-Saclay, F-91405 Orsay, France.
| |
Collapse
|
9
|
Hatanaka M. Size dependence of optical activities in helical polymers. Chirality 2024; 36:e23641. [PMID: 38384158 DOI: 10.1002/chir.23641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
Chiroptical properties of helical polymers do not always align with the sum of the local contributions of their unit cells. This study investigates the discrepancy in optical rotatory strength between local and global structures using a right-handed helical polyacetylene model. The chirality is examined through density functional theory (DFT) calculations. The analysis reveals that, at higher degrees of polymerization, the contribution of chirality from the helical strand generally surpasses the partial chirality from the local structure. The ratio of local contribution to total contribution is deduced within the framework of crystal orbital theory, and a numerical method using Wannier functions is presented for evaluation.
Collapse
Affiliation(s)
- Masashi Hatanaka
- Division of Materials Science and Engineering, Graduate School of Engineering, Tokyo Denki University, Tokyo, Japan
| |
Collapse
|
10
|
Rode JE, Łyczko K, Kaczorek D, Kawęcki R, Dobrowolski JC. VCD spectra of chiral naphthalene-1-carboxamides in the solid-state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123939. [PMID: 38301569 DOI: 10.1016/j.saa.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
The VCD spectra of chiral 2,3-dihydro-1H-benzo[de]isoquinolin-1-one (8-substituted naphthalene-1-carboxamide, BIQ) were studied in KBr pellets. The X-ray diffractometry revealed that the Me, Ph, and pClPh BIQs crystalize in the monoclinic P21, while nBu, pMePh, and oMeOPh BIQs in the orthorhombic P212121 space group. Only the Me-BIQ crystal exhibits the presence of cyclic amide dimers, while the others contain chains of the amid group hydrogen bonds. For all BIQs, except pMePh, the most intense IR band in the 1750-1550 cm-1 region is located at ca. 1680 cm-1 and is accompanied by two weak ones at ca. 1618 and 1590 cm-1. For the pMePh derivative, four almost equally intense IR bands at 1662, 1639, 1614, and 1588 cm-1 are observed. This region of the IR spectra of BIQs, but pMePh, is well reproduced by calculations based on BIQ monomers. On the other hand, the complex IR pattern of pMePh is computationally reproduced when larger crystal fragments, like octamers, are considered. Registration of the VCD spectra enabled recognizing the complexity of IR contours at ca. 1680 cm-1 by the corresponding VCD motives. For (i) Me, Ph and pClPh (R)-enantiomers, two (+)(-) bands were distinguished and for (ii) nBu and pMePh ones, one VCD band with right-side asymmetry was found. For (iii) oMeOPh the VCD pattern cannot be unambiguously assigned. Thus, the VCD spectra in the ν(C=O) range diverse the studied compounds. Among the set of molecules, pMePh has exceptional crystal geometry. Therefore, its most intense ν(C=O) band position and shape can be connected with the geometry of the hydrogen bonds, interactions, and crystal packing. Interpretation of the VCD spectra is based on linear and packed BIQ octamers. This cluster model can reproduce the main features of the solid-state VCD of BIQs.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland.
| | - Krzysztof Łyczko
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland
| | - Dorota Kaczorek
- University of Siedlce, Faculty of Science, 3 Maja Street No 54 08-110, Siedlce, Poland
| | - Robert Kawęcki
- University of Siedlce, Faculty of Science, 3 Maja Street No 54 08-110, Siedlce, Poland
| | - Jan Cz Dobrowolski
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland
| |
Collapse
|
11
|
Blasius J, Drysch K, Pilz FH, Frömbgen T, Kielb P, Kirchner B. Efficient Prediction of Mole Fraction Related Vibrational Frequency Shifts. J Phys Chem Lett 2023; 14:10531-10536. [PMID: 37972218 DOI: 10.1021/acs.jpclett.3c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
While so far it has been possible to calculate vibrational spectra of mixtures at a particular composition, we present here a novel cluster approach for a fast and robust calculation of mole fraction dependent infrared and vibrational circular dichroism spectra at the example of acetonitrile/(R)-butan-2-ol mixtures. By assigning weights to a limited number of quantum chemically calculated clusters, vibrational spectra can be obtained at any desired composition by a weighted average of the single cluster spectra. In this way, peak positions carrying information about intermolecular interactions can be predicted. We show that mole fraction dependent peak shifts can be accurately modeled and, that experimentally recorded infrared spectra can be reproduced with high accuracy over the entire mixing range. Because only a very limited number of clusters is required, the presented approach is a valuable and computationally efficient tool to access mole fraction dependent spectra of mixtures on a routine basis.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| | - Katrin Drysch
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| | - Frank Hendrik Pilz
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, D-53115 Bonn, Germany
| | - Tom Frömbgen
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Patrycja Kielb
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, D-53115 Bonn, Germany
- Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions" (TRA Matter), University of Bonn, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Rouquet E, Roy Chowdhury M, Garcia GA, Nahon L, Dupont J, Lepère V, Le Barbu-Debus K, Zehnacker A. Induced photoelectron circular dichroism onto an achiral chromophore. Nat Commun 2023; 14:6290. [PMID: 37813848 PMCID: PMC10562374 DOI: 10.1038/s41467-023-42002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
An achiral chromophore can acquire a chiral spectroscopic signature when interacting with a chiral environment. This so-called induced chirality is documented in electronic or vibrational circular dichroism, which arises from the coupling between electric and magnetic transition dipoles. Here, we demonstrate that a chiroptical response is also induced within the electric dipole approximation by observing the asymmetric scattering of a photoelectron ejected from an achiral chromophore in interaction with a chiral host. In a phenol-methyloxirane complex, removing an electron from an achiral aromatic π orbital localised on the phenol moiety results in an intense and opposite photoelectron circular dichroism (PECD) for the two enantiomeric complexes with (R) and (S) methyloxirane, evidencing the long-range effect (~5 Å) of the scattering chiral potential. This induced chirality has important structural and analytical implications, discussed here in the context of growing interest in laser-based PECD, for in situ, real time enantiomer determination.
Collapse
Affiliation(s)
- Etienne Rouquet
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, F-91190, St Aubin, France
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France
| | | | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, F-91190, St Aubin, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, F-91190, St Aubin, France.
| | - Jennifer Dupont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France
| | - Valéria Lepère
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France
| | - Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France.
| |
Collapse
|
13
|
Jähnigen S. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angew Chem Int Ed Engl 2023; 62:e202303595. [PMID: 37071543 DOI: 10.1002/anie.202303595] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/19/2023]
Abstract
Chirality is a curious phenomenon that appears in various forms. While the concept of molecular (RS-)chirality is ubiquitous in chemistry, there are also more intricate forms of structural chirality. One of them is the enantiomorphism of crystals, especially molecular crystals, that describes the lack of mirror symmetry in the unit cell. Its relation to molecular chirality is not obvious, but still an open question, which can be addressed with chiroptical tools. Vibrational circular dichroism (VCD) denotes chiral infrared (IR) spectroscopy that is susceptible to both, the molecular as well as the intermolecular space by means of vibrational transitions. When carried out in the solid state, VCD delivers a very rich set of non-local contributions that are determined by crystal packing and collective motion. Since its discovery in the 1970s, VCD has become the method of choice for the determination of absolute configurations, but its applicability reaches beyond towards the study of different crystal forms and polymorphism. This brief review summarises the theoretical concepts of crystal chirality and how computations of solid-state VCD can shed light into the intimate connection of chiral structure and vibrational optical activity.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
14
|
Vaccaro PH, Xu Y. Virtual Issue on Chiroptical Spectroscopy. J Phys Chem A 2023; 127:7677-7681. [PMID: 37732338 DOI: 10.1021/acs.jpca.3c05566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Affiliation(s)
- Patrick H Vaccaro
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
15
|
Blasius J, Kirchner B. Selective Chirality Transfer to the Bis(trifluoromethylsulfonyl)imide Anion of an Ionic Liquid. Chemistry 2023; 29:e202301239. [PMID: 37341169 DOI: 10.1002/chem.202301239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Chirality transfer from the chiral molecule (R)-1,2-propylene oxide to the achiral anion of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid is observed. The chiral probe selectively affects one part of the binary ionic liquid, i. e., it has previously been shown experimentally and theoretically that this particular imidazolium cation can be affected by chirality transfer, but in the present system chirality is almost exclusively transferred to the anion and not to both parts of the solvent (anion and cation). This observation is of high relevance because of its selectivity and because anion effects are usually much more important in ionic liquid research than cation effects. From ab initio molecular dynamics simulations, a conformational analysis and dissected vibrational circular dichroism spectra are obtained to study the chirality transfer. While in the neat ionic liquid two mirror imaged trans conformers of the anion occur almost equally, we observe an excess of one of these conformers in the presence of the chiral solute, causing optical activity of the anion. Although the cis conformers are not tremendously affected by the chirality transfer, they gain in total population when (R)-1,2-propylene oxide is dissolved in the ionic liquid.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| |
Collapse
|
16
|
Jähnigen S, Le Barbu-Debus K, Guillot R, Vuilleumier R, Zehnacker A. How Crystal Symmetry Dictates Non-Local Vibrational Circular Dichroism in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202215599. [PMID: 36441537 PMCID: PMC10107176 DOI: 10.1002/anie.202215599] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
Solid-State Vibrational Circular Dichroism (VCD) can be used to determine the absolute structure of chiral crystals, but its interpretation remains a challenge in modern spectroscopy. In this work, we investigate the effect of a twofold screw axis on the solid-state VCD spectrum in a combined experimental and theoretical analysis of P21 crystals of (S)-(+)-1-indanol. Even though the space group is achiral, a single proper symmetry operation has an important impact on the VCD spectrum, which reflects the supramolecular chirality of the crystal. Distinguishing between contributions originating from molecular chirality and from chiral crystal packing, we find that while IR absorption hardly depends on the symmetry of the space group, the situation is different for VCD, where completely new non-local patterns emerge. Understanding the two underlying mechanisms, namely gauge transport and direct coupling, will help to use VCD to distinguish polymorphic forms.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS, PSL University, Sorbonne Université, 75005, Paris, France
| | - Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS, PSL University, Sorbonne Université, 75005, Paris, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
17
|
Galimberti DR. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. J Chem Theory Comput 2022; 18:6217-6230. [PMID: 36112978 PMCID: PMC9558311 DOI: 10.1021/acs.jctc.2c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/29/2022]
Abstract
The paper illustrates the Activity Weighted Velocities (AWV) methodology to compute Vibrational Circular Dichroism (VCD) anharmonic spectra from Density Functional Theory (DFT) molecular dynamics. AWV calculates the spectra by the Fourier Transform of the time correlation functions of velocities, weighted by specific observables: the Atomic Polar Tensors (APTs) and the Atomic Axial Tensors (AATs). Indeed, AWV shows to correctly reproduce the experimental spectra for systems in the gas and liquid phases, both in the case of weakly and strongly interacting systems. The comparison with the experimental spectra is striking especially in the fingerprint region, as demonstrated by the three benchmark systems discussed: (1S)-Fenchone in the gas phase, (S)-(-)-Propylene oxide in the liquid phase, and (R)-(-)-2-butanol in the liquid phase. The time evolution of APTs and AATs can be adequately described by a linear combination of the tensors of a small set of appropriate reference structures, strongly reducing the computational cost without compromising accuracy. Additionally, AWV allows the partition of the spectral signal in its molecular components without any expensive postprocessing and any localization of the charge density or the wave function.
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
18
|
Dupont J, Guillot R, Lepère V, Zehnacker A. Jet-cooled laser spectroscopy and solid-state vibrational circular dichroism of the cyclo-(Tyr-Phe) diketopiperazine dipeptide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Ditler E, Zimmermann T, Kumar C, Luber S. Implementation of Nuclear Velocity Perturbation and Magnetic Field Perturbation Theory in CP2K and Their Application to Vibrational Circular Dichroism. J Chem Theory Comput 2022; 18:2448-2461. [PMID: 35363490 DOI: 10.1021/acs.jctc.2c00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the implementation of nuclear velocity perturbation theory (NVPT), using a pioneering combination of atom-centered (velocity-dependent) Gaussian basis functions and plane waves in the CP2K package. The atomic polar tensors (APTs) and atomic axial tensors (AATs) are evaluated in the velocity representation using efficient density functional perturbation theory. The presence of nonlocal pseudopotentials, the representation of potentials on numerical integration grids, and effects arising from the basis functions being centered on the atoms have been considered in the implementation. The Magnetic Field Perturbation Theory (MFPT) using gauge-including atomic orbitals is implemented in the same code and compared to the NVPT. Our implementation is the first to compare both approaches (MFPT and NVPT) in the same code. The implementation has been verified via sum rules and by investigating the gauge origin dependence of the AATs for a set of small molecules, oxirane, and fluoro-oxirane. We also present vibrational circular dichroism spectra that are related to the APTs and AATs, applying both theories.
Collapse
Affiliation(s)
- Edward Ditler
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Tomáš Zimmermann
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Chandan Kumar
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Dupont J, Lepère V, Zehnacker A, Hartweg S, Garcia GA, Nahon L. Photoelectron Circular Dichroism as a Signature of Subtle Conformational Changes: The Case of Ring Inversion in 1-Indanol. J Phys Chem Lett 2022; 13:2313-2320. [PMID: 35245057 DOI: 10.1021/acs.jpclett.2c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chirality plays a fundamental role in the molecular recognition processes. Molecular flexibility is also crucial in molecular recognition, allowing the interacting molecules to adjust their structures and hence optimize the interaction. Methods probing simultaneously chirality and molecular conformation are therefore crucially needed. Taking advantage of a possible control in the gas phase of the conformational distribution between the equatorial and axial conformers resulting from a ring inversion in jet-cooled 1-indanol, we demonstrate here the sensitivity of valence-shell photoelectron circular dichroism (PECD) to both chirality and subtle conformational changes, in a case where the photoelectron spectra of the two conformers are identical. For the highest occupied orbital, we observe a dramatic inversion of the PECD-induced photoelectron asymmetries, while the photoionization cross-section and usual anisotropy (β) parameter are completely insensitive to conformational isomerism. Such a sensitivity is a major asset for the ongoing developments of PECD-based techniques as a sensitive chiral (bio)chemical analytical tool in the gas phase.
Collapse
Affiliation(s)
- Jennifer Dupont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Valéria Lepère
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Sebastian Hartweg
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| | - Gustavo A Garcia
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| | - Laurent Nahon
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| |
Collapse
|
21
|
Sato H, Aisawa S, Ida H, Shimizu M, Watanabe K, Koshoubu J, Yoshida J, Kawamura I. Two-dimensional Imaging of a Model Pharmaceutical Dosage Tablet Using a Scanning Vibrational Circular Dichroism System. CHEM LETT 2021. [DOI: 10.1246/cl.210635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hisako Sato
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Sumio Aisawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | - Honoka Ida
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | | | | | - Jun Koshoubu
- JASCO Corporation, Hachioji, Tokyo, 192-8537, Japan
| | - Jun Yoshida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|