1
|
Fu E, Gong F, Wang S, Xiao R. Chemical Looping Technology in Mild-Condition Ammonia Production: A Comprehensive Review and Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305095. [PMID: 37653614 DOI: 10.1002/smll.202305095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/06/2023] [Indexed: 09/02/2023]
Abstract
Ammonia is an efficient and clean hydrogen carrier that promises to tackle the increasing energy and environmental problems. However, more than 90% of ammonia is produced by the Haber-Bosch process, and its enormous energy consumption and CO2 emissions require the development of novel alternatives. Chemical looping technology can decouple the one-step ammonia synthesis reaction into separated nitridation and hydrogenation processes at atmospheric pressure, thereby achieving the mild ammonia synthesis based on renewable energy. The strategy of stepwise reactions circumvents the problem of competing adsorption of N2 and H2 /H2 O at the active sites and provides additive freedom for optimal regulation of sub-reactions. This review introduces the concept and mechanism of chemical looping ammonia production (CLAP), and comprehensively summarizes the state-of-art research from the perspective of reaction pathways and nitrogen carriers. The challenges faced by CLAP and strategies to address them in terms of nitrogen carriers, methods, equipment, and technological processes are also proposed.
Collapse
Affiliation(s)
- Enkang Fu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Sijun Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
2
|
Adeniyi A, Bello I, Mukaila T, Sarker NC, Hammed A. Trends in Biological Ammonia Production. BIOTECH 2023; 12:41. [PMID: 37218758 PMCID: PMC10204498 DOI: 10.3390/biotech12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Food production heavily depends on ammonia-containing fertilizers to improve crop yield and profitability. However, ammonia production is challenged by huge energy demands and the release of ~2% of global CO2. To mitigate this challenge, many research efforts have been made to develop bioprocessing technologies to make biological ammonia. This review presents three different biological approaches that drive the biochemical mechanisms to convert nitrogen gas, bioresources, or waste to bio-ammonia. The use of advanced technologies-enzyme immobilization and microbial bioengineering-enhanced bio-ammonia production. This review also highlighted some challenges and research gaps that require researchers' attention for bio-ammonia to be industrially pragmatic.
Collapse
Affiliation(s)
- Adewale Adeniyi
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Taofeek Mukaila
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Niloy Chandra Sarker
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Ademola Hammed
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
3
|
Manavi N, Liu B. Mitigating Coke Formations for Dry Reforming of Methane on Dual-Site Catalysts: A Microkinetic Modeling Study. THE JOURNAL OF PHYSICAL CHEMISTRY C 2023; 127:2274-2284. [DOI: 10.1021/acs.jpcc.2c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Narges Manavi
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas66506, United States
| | - Bin Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas66506, United States
| |
Collapse
|
4
|
Xu G, Cai C, Zhao W, Liu Y, Wang T. Rational design of catalysts with earth‐abundant elements. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gaomou Xu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Cheng Cai
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Wanghui Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Yonghua Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| |
Collapse
|
5
|
Wang B, Shen L. Recent Advances in NH 3 Synthesis with Chemical Looping Technology. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Baoyi Wang
- School of Energy and Environment, Southeast University, Nanjing210096, China
| | - Laihong Shen
- School of Energy and Environment, Southeast University, Nanjing210096, China
| |
Collapse
|
6
|
Cui C, Zhang H, Cheng R, Huang B, Luo Z. On the Nature of Three-Atom Metal Cluster Catalysis for N 2 Reduction to Ammonia. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Hongchao Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Ran Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Benben Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
7
|
Li ZY, Mou LH, Jiang GD, Liu QY, He SG. 15 N/ 14N isotopic exchange in the dissociative adsorption of N 2 on tantalum nitride cluster anions Ta 3N 3−. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2112286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adsorption and activation of dinitrogen (N2) is an indispensable process in nitrogen fixation. Metal nitride species continue to attract attention as a promising catalyst for ammonia synthesis. However, the detailed mechanisms at a molecular level between reactive nitride species and N2 remain unclear at elevated temperature, which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system. Herein, the 14N/15N isotopic exchange in the reaction between tantalum nitride cluster anions Ta314N3− and 15N2 leading to the regeneration of 14N2/14N15N was observed at elevated temperature (393−593 K) using mass spectrometry. With the aid of theoretical calculations, the exchange mechanism and the effect of temperature to promote the dissociation of N2 on Ta3N3− were elucidated. A comparison experiment for Ta314N4−/15N2 couple indicated that only desorption of 15N2 from Ta314N415N2− took place at elevated temperature. The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species. This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.
Collapse
Affiliation(s)
- Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Senthamaraikannan TG, Kaliaperumal S, Krishnamurty S. Role of Chemical Structure of Support in Enhancing the Catalytic Activity of a Single Atom Catalyst Toward NRR: A Computational Study. Front Chem 2021; 9:733422. [PMID: 34568282 PMCID: PMC8455884 DOI: 10.3389/fchem.2021.733422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
Using the periodic density functional theory–based methodology, we propose a potential catalytic system for dinitrogen activation, viz., single metal atoms (Mo, Fe, and V) supported on graphene-based sheets. Graphene-based sheets show an excellent potential toward the anchoring of single atoms on them (Mo, Fe, and V) with adsorption energies ranging between 1.048 and 10.893 eV. Factors such as defects and BN doping are noted to enhance the adsorption energies of single metal atoms on the support. The adsorption of a dinitrogen molecule on metal atom–anchored graphene-based supports is seen to be highly favorable, ranging between 0.620 and 2.278 eV. The adsorption is driven through a direct hybridization between the d orbitals of the metal atom (Mo, Fe, and V) on the support and the p orbital of the molecular nitrogen. Noticeably, BN-doped graphene supporting a single metal atom (Mo, Fe, and V) activates the N2 molecule with a red shift in the N–N stretching frequency (1,597 cm−1 as compared to 2,330 cm−1 in the free N2 molecule). This red shift is corroborated by an increase in the N–N bond length (1.23 Å from 1.09 Å) and charge transfer to an N2 molecule from the catalyst.
Collapse
Affiliation(s)
- Thillai Govindaraja Senthamaraikannan
- Department of Environmental Engineering, Chungbuk National University, Cheongju, Korea.,Nano and Computational Material Lab, Catalysis Division, CSIR-National Chemical Laboratory, Pune, India
| | - Selvaraj Kaliaperumal
- Nano and Computational Material Lab, Catalysis Division, CSIR-National Chemical Laboratory, Pune, India
| | | |
Collapse
|