1
|
Liu Y, Sheng S, Wu M, Wang S, Wang Y, Yang H, Chen J, Hao X, Zhi C, Wang Y, Xie H. Controllable Synthesis of PtIrCu Ternary Alloy Ultrathin Nanowires for Enhanced Ethanol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3934-3940. [PMID: 36636752 DOI: 10.1021/acsami.2c17883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rational design and controllable synthesis of catalysts with unique structure and composition are effective ways to promote electrocatalytic ethanol oxidation, thus contributing the direct ethanol fuel cells to gain ground. Herein, 2.5 nm-thin PtIrCu ternary alloy ultrathin nanowires (UNWs) with high-density planar defects are synthesized via oriented attachment with the assistance of H2. By adjusting the contents of Ir and Cu atoms, we find that the structure of the products changed from nanowires (NWs) to nanoparticles with the increase of Ir content. Density functional theory calculations show that when Cu atoms are replaced by Ir atoms, the vacancy formation energy of Pt atoms is increased, making the Pt atoms difficult to be activated by H2, which is not conducive to the formation of a one-dimensional structure. The optimal Pt43Ir32Cu25 UNWs achieve excellent ethanol electrooxidation reaction activity (1.05 A·mg-1Pt and 1.67 mA·cm-2), for it can significantly reduce the onset potential and improve the ability of CO anti-poisoning. The significant improvement in catalytic performance is attributed to the synergistic effect of the alloy and the NW structure with high-density planar defects.
Collapse
Affiliation(s)
- Yaming Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shanxiang Sheng
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Meng Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Sen Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yaxin Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Hongyue Yang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Jiahao Chen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Xiangyang Hao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Chao Zhi
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yongzhen Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co. Ltd, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Wei Y, Mao Z, Ma XY, Zhan C, Cai WB. Plasmon-Enhanced C-C Bond Cleavage toward Efficient Ethanol Electrooxidation. J Phys Chem Lett 2022; 13:11288-11294. [PMID: 36449387 DOI: 10.1021/acs.jpclett.2c03292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ethanol, as a sustainable biomass fuel, is endowed with the merits of theoretically high energy density and environmental friendliness yet suffers from sluggish kinetics and low selectivity toward the desired complete electrooxidation (C1 pathway). Here, the localized surface plasmon resonance (LSPR) effect is explored as a manipulating knob to boost electrocatalytic ethanol oxidation reaction in alkaline media under ambient conditions by appropriate visible light. Under illumination, Au@Pt nanoparticles with plasmonic core and active shell exhibit concurrently higher activity (from 2.30 to 4.05 A mgPt-1 at 0.8 V vs RHE) and C1 selectivity (from 9 to 38% at 0.8 V). In situ attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) provides a molecular level insight into the LSPR promoted C-C bond cleavage and the subsequent CO oxidation. This work not only extends the methodology hyphenating plasmonic electrocatalysis and in situ surface IR spectroscopy but also presents a promising approach for tuning complex reaction pathways.
Collapse
Affiliation(s)
- Yan Wei
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zijie Mao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Zhang G, Cao D, Guo S, Fang Y, Wang Q, Cheng S, Zuo W, Yang Z, Cui P. Tuning the Selective Ethanol Oxidation on Tensile-Trained Pt(110) Surface by Ir Single Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202587. [PMID: 35871573 DOI: 10.1002/smll.202202587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Development of efficient and robust electrocatalysts for complete oxidation of ethanol is critical for the commercialization of direct ethanol fuel cells. However, the complete oxidation of ethanol suffers from poor efficiency due to the low C1 pathway selectivity. Herein, single-atomic Ir (Ir1 ) on hcp-PtPb/fcc-Pt core-shell hexagonal nanoplates (PtPb@PtIr1 HNPs) enclosed by Pt(110) surface with a 7.2% tensile strain is constructed to drive complete electro-oxidation of ethanol. Benefiting from the construction of Ir1 sites, the PtPb@PtIr1 HNPs exhibit a Faraday efficiency of 57.93% for the C1 pathway, which is ≈8.3 times higher than that of the commercial Pt/C-JM. Furthermore, the PtPb@PtIr1 HNPs show a top-ranked electro-activity achieving 45.1-fold and 56.3-fold higher than the specific and mass activities of Pt/C-JM, respectively. Meanwhile, the durability can be significantly enhanced by the construction of Ir1 sites. Density functional theory calculations indicate that the strong synergy on the PtPb@PtIr1 HNPs surface significantly promotes the breaking of CC bond of CH2 CO* and facilitates CO oxidation and suppresses the deactivation of the catalyst. This work offers a unique single-atom approach using low-coordination active sites on shape-controlled nanocrystals to tune the selectivity and activity toward complicated catalytic reactions.
Collapse
Affiliation(s)
- Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Dongjie Cao
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Shiyu Guo
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Yan Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Sheng Cheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Wansheng Zuo
- Wuhu Tus-Semiconductor Co., Limin East Road 82, Wuhu, 241000, P. R. China
| | - Zhenzhen Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| |
Collapse
|
4
|
Lv H, Sun L, Wang Y, Liu S, Liu B. Highly Curved, Quasi-Single-Crystalline Mesoporous Metal Nanoplates Promote CC Bond Cleavage in Ethanol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203612. [PMID: 35640570 DOI: 10.1002/adma.202203612] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The ability to manipulate metal nanocrystals with well-defined morphologies and structures is greatly important in material chemistry, catalysis chemistry, nanoscience, and nanotechnology. Although 2D metals serve as interesting platforms, further manipulating them in solution with highly penetrated mesopores and ideal crystallinity remains a huge challenge. Here, an easy yet powerful synthesis strategy for manipulating the mesoporous structure and crystallinity of 2D metals in a controlled manner with cetyltrimethylammonium chloride as the mesopore-forming surfactant and extra iodine-ion as the structure/facet-selective agent is reported. This strategy allows for preparing an unprecedented type of 2D quasi-single-crystalline mesoporous nanoplates (SMPs) with highly curved morphology and controlled metal composition. The products, for example, PdCu SMPs, feature abundant undercoordinated sites, optimized electronic structures, excellent electron/mass transfers, and confined mesopore environments. Curved PdCu SMPs exhibit remarkable electrocatalytic activity of 6.09 A mgPd -1 and stability for ethanol oxidation reaction (EOR) compared with its counterpart catalysts and commercial Pd/C. More importantly, PdCu SMPs are highly selective for EOR electrocatalysis that dramatically promotes C-C bond cleavage with a superior C1 pathway selectivity as high as 72.1%.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Ipadeola AK, Eid K, Lebechi AK, Abdullah AM, Ozoemena KI. Porous multi-metallic Pt-based nanostructures as efficient electrocatalysts for ethanol oxidation: A mini-review. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
6
|
Abstract
Noble-metal nanoparticles (NMNPs), with their outstanding properties, have been arousing the interest of scientists for centuries. Although our knowledge of them is much more significant today, and we can obtain NMNPs in various sizes, shapes, and compositions, our interest in them has not waned. When talking about noble metals, gold, silver, and platinum come to mind first. Still, we cannot forget about elements belonging to the so-called platinum group, such as ruthenium, rhodium, palladium, osmium, and iridium, whose physical and chemical properties are very similar to those of platinum. It makes them highly demanded and widely used in various applications. This review presents current knowledge on the preparation of all noble metals in the form of nanoparticles and their assembling with carbon supports. We focused on the catalytic applications of these materials in the fuel-cell field. Furthermore, the influence of supporting materials on the electrocatalytic activity, stability, and selectivity of noble-metal-based catalysts is discussed.
Collapse
|