1
|
Saito M, Saito K, Ishikita H. Structural and energetic insights into Mn-to-Fe substitution in the oxygen-evolving complex. iScience 2023; 26:107352. [PMID: 37520740 PMCID: PMC10382916 DOI: 10.1016/j.isci.2023.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Manganese (Mn) serves as the catalytic center for water splitting in photosystem II (PSII), despite the abundance of iron (Fe) on earth. As a first step toward why Mn and not Fe is employed by Nature in the water oxidation catalyst, we investigated the Fe4CaO5 cluster in the PSII protein environment using a quantum mechanical/molecular mechanical (QM/MM) approach, assuming an equivalence between Mn(III/IV) and Fe(II/III). Substituting Mn with Fe resulted in the protonation of μ-oxo bridges at sites O2 and O3 by Arg357 and D1-His337, respectively. While the Mn4CaO5 cluster exhibits distinct open- and closed-cubane S2 conformations, the Fe4CaO5 cluster lacks this variability due to an equal spin distribution over sites Fe1 and Fe4. The absence of a low-barrier H-bond between a ligand water molecule (W1) and D1-Asp61 in the Fe4CaO5 cluster may underlie its incapability for ligand water deprotonation, highlighting the relevance of Mn in natural water splitting.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Kanda T, Ishikita H. Redox Potentials of Iron-Sulfur Clusters in Type I Photosynthetic Reaction Centers. J Phys Chem B 2023; 127:4998-5004. [PMID: 37226417 PMCID: PMC10259448 DOI: 10.1021/acs.jpcb.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Indexed: 05/26/2023]
Abstract
The electron transfer pathways in type I photosynthetic reaction centers, such as photosystem I (PSI) and reaction centers from green sulfur bacteria (GsbRC), are terminated by two Fe4S4 clusters, FA and FB. The protein structures are the basis of understanding how the protein electrostatic environment interacts with the Fe4S4 clusters and facilitates electron transfer. Using the protein structures, we calculated the redox potential (Em) values for FA and FB in PSI and GsbRC, solving the linear Poisson-Boltzmann equation. The FA-to-FB electron transfer is energetically downhill in the cyanobacterial PSI structure, while it is isoenergetic in the plant PSI structure. The discrepancy arises from differences in the electrostatic influences of conserved residues, including PsaC-Lys51 and PsaC-Arg52, located near FA. The FA-to-FB electron transfer is slightly downhill in the GsbRC structure. Em(FA) and Em(FB) exhibit similar levels upon isolation of the membrane-extrinsic PsaC and PscB subunits from the PSI and GsbRC reaction centers, respectively. The binding of the membrane-extrinsic subunit at the heterodimeric/homodimeric reaction center plays a key role in tuning Em(FA) and Em(FB).
Collapse
Affiliation(s)
- Tomoki Kanda
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Tamura H, Saito K, Nishio S, Ishikita H. Electron-Transfer Route in the Early Oxidation States of the Mn 4CaO 5 Cluster in Photosystem II. J Phys Chem B 2023; 127:205-211. [PMID: 36542840 PMCID: PMC9841979 DOI: 10.1021/acs.jpcb.2c08246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The electron transfer from the oxygen-evolving Mn4CaO5 cluster to the electron acceptor D1-Tyr161 (TyrZ) is a prerequisite for water oxidation and O2 evolution. Here, we analyzed the electronic coupling in the rate-limiting electron-transfer transitions using a combined quantum mechanical/molecular mechanical/polarizable continuum model approach. In the S0 to S1 transition, the electronic coupling between the electron-donor Mn3(III) and TyrZ is small (2 meV). In contrast, the electronic coupling between the dangling Mn4(III) and TyrZ is significantly large (172 meV), which suggests that the electron transfer proceeds from Mn3(III) to TyrZ via Mn4(III). In the S1 to S2 transition, the electronic coupling between Mn4(III) and TyrZ is also larger (124 meV) than that between Mn1(III) and TyrZ (1 meV), which favors the formation of the open-cubane S2 conformation with Mn4(IV) over the formation of the closed-cubane S2 conformation with Mn1(IV). In the S0 to S1 and S1 to S2 transitions, the Mn4 d-orbital and the TyrZ π-orbital are hybridized via D1-Asp170, which suggests that D1-Asp170 commonly provides a dominant electron-transfer route.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Shunya Nishio
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| |
Collapse
|
4
|
Kanda T, Saito K, Ishikita H. Mechanism of Mixed-Valence Fe 2.5+···Fe 2.5+ Formation in Fe 4S 4 Clusters in the Ferredoxin Binding Motif. J Phys Chem B 2022; 126:3059-3066. [PMID: 35435680 PMCID: PMC9059760 DOI: 10.1021/acs.jpcb.2c01320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most low-potential Fe4S4 clusters exist in the conserved binding sequence CxxCxxC (CnCn+3Cn+6). Fe(II) and Fe(III) at the first (Cn) and third (Cn+6) cysteine ligand sites form a mixed-valence Fe2.5+···Fe2.5+ pair in the reduced Fe(II)3Fe(III) cluster. Here, we investigate the mechanism of how the conserved protein environment induces mixed-valence pair formation in the Fe4S4 clusters, FX, FA, and FB in photosystem I, using a quantum mechanical/molecular mechanical approach. Exchange coupling between Fe sites is predominantly determined by the shape of the Fe4S4 cluster, which is stabilized by the preorganized protein electrostatic environment. The backbone NH and CO groups in the conserved CxxCxxC and adjacent helix regions orient along the FeCn···FeC(n+6) axis, generating an electric field and stabilizing the FeCn(II)FeC(n+6)(III) state in FA and FB. The overlap of the d orbitals via -S- (superexchange) is observed for the single FeCn(II)···FeC(n+6)(III) pair, leading to the formation of the mixed-valence Fe2.5+···Fe2.5+ pair. In contrast, several superexchange Fe(II)···Fe(III) pairs are observed in FX due to the highly symmetric pair of the CDGPGRGGTC sequences. This is likely the origin of FX serving as an electron acceptor in the two electron transfer branches.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|