1
|
de Oliveira AP, Chase W, Confer MP, Walker S, Baghel D, Ghosh A. Colocalization of β-Sheets and Carotenoids in Aβ Plaques Revealed with Multimodal Spatially Resolved Vibrational Spectroscopy. J Phys Chem B 2024; 128:33-44. [PMID: 38124262 PMCID: PMC10851346 DOI: 10.1021/acs.jpcb.3c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The aggregation of amyloid β(Aβ) peptides is at the heart of Alzheimer's disease development and progression. As a result, amyloid aggregates have been studied extensively in vitro, and detailed structural information on fibrillar amyloid aggregates is available. However, forwarding these structural models to amyloid plaques in the human brain is still a major challenge. The chemistry of amyloid plaques, particularly in terms of the protein secondary structure and associated chemical moieties, remains poorly understood. In this report, we use Raman microspectroscopy to identify the presence of carotenoids in amyloid plaques and demonstrate that the abundance of carotenoids is correlated with the overall protein secondary structure of plaques, specifically to the population of β-sheets. While the association of carotenoids with plaques has been previously identified, their correlation with the β structure has never been identified. To further validate these findings, we have used optical photothermal infrared (O-PTIR) spectroscopy, which is a spatially resolved technique that yields complementary infrared contrast to Raman. O-PTIR unequivocally demonstrates the presence of elevated β-sheets in carotenoid-containing plaques and the lack of β structure in noncarotenoid plaques. Our findings underscore the potential link between anti-inflammatory species as carotenoids to specific secondary structural motifs within Aβ plaques and highlight the possible role of chemically distinct plaques in neuroinflammation, which can uncover new mechanistic insights and lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
| | - William Chase
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Matthew P. Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, Illinois 61801, USA
| | - Savannah Walker
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Divya Baghel
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
2
|
Holcombe B, Foes A, Banerjee S, Yeh K, Wang SHJ, Bhargava R, Ghosh A. Intermediate Antiparallel β Structure in Amyloid β Plaques Revealed by Infrared Spectroscopic Imaging. ACS Chem Neurosci 2023; 14:3794-3803. [PMID: 37800883 PMCID: PMC10662787 DOI: 10.1021/acschemneuro.3c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Aggregation of amyloid β (Aβ) peptides into extracellular plaques is a hallmark of the molecular pathology of Alzheimer's disease (AD). Amyloid aggregates have been extensively studied in vitro, and it is well-known that mature amyloid fibrils contain an ordered parallel β structure. The structural evolution from unaggregated peptide to fibrils can be mediated through intermediate structures that deviate significantly from mature fibrils, such as antiparallel β-sheets. However, it is currently unknown if these intermediate structures exist in plaques, which limits the translation of findings from in vitro structural characterizations of amyloid aggregates to AD. This arises from the inability to extend common structural biology techniques to ex vivo tissue measurements. Here we report the use of infrared (IR) imaging, wherein we can spatially localize plaques and probe their protein structural distributions with the molecular sensitivity of IR spectroscopy. Analyzing individual plaques in AD tissues, we demonstrate that fibrillar amyloid plaques exhibit antiparallel β-sheet signatures, thus providing a direct connection between in vitro structures and amyloid aggregates in the AD brain. We further validate results with IR imaging of in vitro aggregates and show that the antiparallel β-sheet structure is a distinct structural facet of amyloid fibrils.
Collapse
Affiliation(s)
- Brooke Holcombe
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Abigail Foes
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shih-Hsiu J. Wang
- Departments of Pathology and Neurology, Duke University, Durham, NC 27710, USA
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
3
|
Yeh K, Sharma I, Falahkheirkhah K, Confer MP, Orr AC, Liu YT, Phal Y, Ho RJ, Mehta M, Bhargava A, Mei W, Cheng G, Cheville JC, Bhargava R. Infrared spectroscopic laser scanning confocal microscopy for whole-slide chemical imaging. Nat Commun 2023; 14:5215. [PMID: 37626026 PMCID: PMC10457288 DOI: 10.1038/s41467-023-40740-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Chemical imaging, especially mid-infrared spectroscopic microscopy, enables label-free biomedical analyses while achieving expansive molecular sensitivity. However, its slow speed and poor image quality impede widespread adoption. We present a microscope that provides high-throughput recording, low noise, and high spatial resolution where the bottom-up design of its optical train facilitates dual-axis galvo laser scanning of a diffraction-limited focal point over large areas using custom, compound, infinity-corrected refractive objectives. We demonstrate whole-slide, speckle-free imaging in ~3 min per discrete wavelength at 10× magnification (2 μm/pixel) and high-resolution capability with its 20× counterpart (1 μm/pixel), both offering spatial quality at theoretical limits while maintaining high signal-to-noise ratios (>100:1). The data quality enables applications of modern machine learning and capabilities not previously feasible - 3D reconstructions using serial sections, comprehensive assessments of whole model organisms, and histological assessments of disease in time comparable to clinical workflows. Distinct from conventional approaches that focus on morphological investigations or immunostaining techniques, this development makes label-free imaging of minimally processed tissue practical.
Collapse
Affiliation(s)
- Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishaan Sharma
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kianoush Falahkheirkhah
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew P Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andres C Orr
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yen-Ting Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yamuna Phal
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ruo-Jing Ho
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Manu Mehta
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ankita Bhargava
- University of Illinois Laboratory High School, Urbana, IL, 61801, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Georgina Cheng
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle Health, Urbana, IL, 61801, USA
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Zhao J, Jiang L, Matlock A, Xu Y, Zhu J, Zhu H, Tian L, Wolozin B, Cheng JX. Mid-infrared chemical imaging of intracellular tau fibrils using fluorescence-guided computational photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:147. [PMID: 37322011 PMCID: PMC10272128 DOI: 10.1038/s41377-023-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the β-sheet for tau fibril structure is achieved.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Li X, Zheng P, Cao W, Cao Y, She X, Yang H, Ma K, Wu F, Gao X, Fu Y, Yin J, Wei F, Jiang S, Cui B. Lactobacillus rhamnosus GG ameliorates noise-induced cognitive deficits and systemic inflammation in rats by modulating the gut-brain axis. Front Cell Infect Microbiol 2023; 13:1067367. [PMID: 37180445 PMCID: PMC10169735 DOI: 10.3389/fcimb.2023.1067367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background Environmental noise exposure is linked to neuroinflammation and imbalance of the gut microbiota. Promoting gut microbiota homeostasis may be a key factor in relieving the deleterious non-auditory effects of noise. This study aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) intervention on noise-induced cognitive deficits and systemic inflammation in rats. Methods Learning and memory were assessed using the Morris water maze, while 16S rRNA sequencing and gas chromatography-mass spectrometry were used to analyze the gut microbiota and short-chain fatty acid (SCFA) content. Endothelial tight junction proteins and serum inflammatory mediators were assessed to explore the underlying pathological mechanisms. Results The results indicated that Lactobacillus rhamnosus GG intervention ameliorated noise-induced memory deterioration, promoted the proliferation of beneficial bacteria, inhibited the growth of harmful bacteria, improved dysregulation of SCFA-producing bacteria, and regulated SCFA levels. Mechanistically, noise exposure led to a decrease in tight junction proteins in the gut and hippocampus and an increase in serum inflammatory mediators, which were significantly alleviated by Lactobacillus rhamnosus GG intervention. Conclusion Taken together, Lactobacillus rhamnosus GG intervention reduced gut bacterial translocation, restored gut and blood-brain barrier functions, and improved gut bacterial balance in rats exposed to chronic noise, thereby protecting against cognitive deficits and systemic inflammation by modulating the gut-brain axis.
Collapse
Affiliation(s)
- Xiaofang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Pengfang Zheng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Wa Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Fangshan Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Jiayi Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| | - Fei Wei
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Holcombe B, Foes A, Banerjee S, Yeh K, Wang SHJ, Bhargava R, Ghosh A. Intermediate antiparallel beta structure in amyloid plaques revealed by infrared spectroscopic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537414. [PMID: 37131832 PMCID: PMC10153194 DOI: 10.1101/2023.04.18.537414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aggregation of amyloid beta (Aβ) peptides into extracellular plaques is a hallmark of the molecular pathology of Alzheimer's disease (AD). Amyloid aggregates have been extensively studied in-vitro, and it is well known that mature amyloid fibrils contain an ordered parallel β structure. The structural evolution from unaggregated peptide to fibrils can be mediated through intermediate structures that deviate significantly from mature fibrils, such as antiparallel β-sheets. However, it is currently unknown if these intermediate structures exist in plaques, which limits the translation of findings from in-vitro structural characterizations of amyloid aggregates to AD. This arises from the inability to extend common structural biology techniques to ex-vivo tissue measurements. Here we report the use of infrared (IR) imaging, wherein we can spatially localize plaques and probe their protein structural distributions with the molecular sensitivity of IR spectroscopy. Analyzing individual plaques in AD tissues, we demonstrate that fibrillar amyloid plaques exhibit antiparallel β-sheet signatures, thus providing a direct connection between in-vitro structures and amyloid aggregates in AD brain. We further validate results with IR imaging of in-vitro aggregates and show that antiparallel β-sheet structure is a distinct structural facet of amyloid fibrils.
Collapse
Affiliation(s)
- Brooke Holcombe
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Abigail Foes
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shih-Hsiu J. Wang
- Departments of Pathology and Neurology, Duke University, Durham, NC 27710, USA
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
7
|
Banerjee S, Baghel D, Pacheco de Oliveira A, Ghosh A. β-Carotene, a Potent Amyloid Aggregation Inhibitor, Promotes Disordered Aβ Fibrillar Structure. Int J Mol Sci 2023; 24:ijms24065175. [PMID: 36982248 PMCID: PMC10049578 DOI: 10.3390/ijms24065175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The aggregation of amyloid beta (Aβ) into fibrillar aggregates is a key feature of Alzheimer’s disease (AD) pathology. β-carotene and related compounds have been shown to associate with amyloid aggregates and have direct impact on the formation of amyloid fibrils. However, the precise effect of β-carotene on the structure of amyloid aggregates is not known, which poses a limitation towards developing it as a potential AD therapeutic. In this report, we use nanoscale AFM-IR spectroscopy to probe the structure of Aβ oligomers and fibrils at the single aggregate level and demonstrate that the main effect of β-carotene towards modulating Aβ aggregation is not to inhibit fibril formation but to alter the secondary structure of the fibrils and promote fibrils that lack the characteristic ordered beta structure.
Collapse
|
8
|
Banerjee S, Holcombe B, Ringold S, Foes A, Naik T, Baghel D, Ghosh A. Nanoscale Infrared Spectroscopy Identifies Structural Heterogeneity in Individual Amyloid Fibrils and Prefibrillar Aggregates. J Phys Chem B 2022; 126:5832-5841. [PMID: 35914320 DOI: 10.1021/acs.jpcb.2c04797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amyloid plaques are one of the central manifestations of Alzheimer's disease pathology. Aggregation of the amyloid beta (Aβ) protein from amorphous oligomeric species to mature fibrils has been extensively studied. However, structural heterogeneities in prefibrillar species, and how that affects the structure of later-stage aggregates are not yet well understood. The integration of infrared spectroscopy with atomic force microscopy (AFM-IR) allows for identifying the signatures of individual nanoscale aggregates by spatially resolving spectra. We use AFM-IR to demonstrate that amyloid oligomers exhibit significant structural variations as evidenced in their infrared spectra. This heterogeneity is transmitted to and retained in protofibrils and fibrils. We show that amyloid fibrils do not always conform to their putative ordered structure and structurally different domains exist in the same fibril. We further demonstrate that these structural heterogeneities manifest themselves as a lack of β sheet structure in amyloid plaques in Alzheimer's tissue using infrared imaging.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Brooke Holcombe
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Sydney Ringold
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Abigail Foes
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Tanmayee Naik
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
9
|
Nguyen TH, Nguyen PH, Ngo ST, Derreumaux P. Effect of Cholesterol Molecules on Aβ1-42 Wild-Type and Mutants Trimers. Molecules 2022; 27:molecules27041395. [PMID: 35209177 PMCID: PMC8879133 DOI: 10.3390/molecules27041395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease displays aggregates of the amyloid-beta (Aβ) peptide in the brain, and there is increasing evidence that cholesterol may contribute to the pathogenesis of the disease. Though many experimental and theoretical studies have focused on the interactions of Aβ oligomers with membrane models containing cholesterol, an understanding of the effect of free cholesterol on small Aβ42 oligomers is not fully established. To address this question, we report on replica exchange with a solute tempering simulation of an Aβ42 trimer with cholesterol and compare it with a previous replica exchange molecular dynamics simulation. We show that the binding hot spots of cholesterol are rather complex, involving hydrophobic residues L17–F20 and L30–M35 with a non-negligible contribution of loop residues D22–K28 and N-terminus residues. We also examine the effects of cholesterol on the trimers of the disease-causing A21G and disease-protective A2T mutations by molecular dynamics simulations. We show that these two mutations moderately impact cholesterol-binding modes. In our REST2 simulations, we find that cholesterol is rarely inserted into aggregates but rather attached as dimers and trimers at the surface of Aβ42 oligomers. We propose that cholesterol acts as a glue to speed up the formation of larger aggregates; this provides a mechanistic link between cholesterol and Alzheimer’s disease.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2021; 129:1-24. [DOI: 10.1007/s00702-021-02449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
|