1
|
Driouech M, Cocchi C, Ramzan MS. Air stability of monolayer WSi 2N 4 in dark and bright conditions. Sci Rep 2024; 14:23254. [PMID: 39370464 PMCID: PMC11456585 DOI: 10.1038/s41598-024-73614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Two-dimensional materials with chemical formula MA2Z4 are a promising class of materials for optoelectronic applications. To exploit their potential, their stability with respect to air pollution has to be analyzed under different conditions. In a first-principle study based on density functional theory, we investigate the adsorption of three common environmental gas molecules (O2, H2O, and CO2) on monolayer WSi2N4, an established representative of the MA2Z4 family. The computed adsorption energies, charge transfer, and projected density of states of the polluted monolayer indicate a relatively weak interaction between substrate and molecules resulting in an ultrashort recovery time of the order of nanoseconds. O2 and water introduce localized states in the upper valence region but do not alter the semiconducting nature of WSi2N4 nor its band-gap size apart from a minor variation of a few tens of meV. Exploring the same scenario in the presence of photogenerated electrons and holes, we do not notice any substantial difference except for O2 chemisorption when negative charge carriers are in the system. In this case, monolayer WSi2N4 exhibits signs of irreversible oxidation, testified by an adsorption energy of -5.5 eV leading to an infinitely long recovery time, a rearrangement of the outermost atomic layer bonding with the pollutant, and n-doping of the system. Our results indicate stability of WSi2N4 against H2O and CO2 in both dark and bright conditions, suggesting the potential of this material in nanodevice applications.
Collapse
Affiliation(s)
- Mustapha Driouech
- Institut für Physik, Carl von Ossietzky Universität, 26129, Oldenburg, Germany
| | - Caterina Cocchi
- Institut für Physik, Carl von Ossietzky Universität, 26129, Oldenburg, Germany.
- Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, 26129, Oldenburg, Germany.
| | | |
Collapse
|
2
|
Gao Z, He Y, Xiong K. Two-dimensional Janus monolayers SPtAZ 2 (A = Si and Ge; Z = N, P, and As): insight into their photocatalytic properties via first-principles calculations. Phys Chem Chem Phys 2024; 26:21173-21185. [PMID: 39072651 DOI: 10.1039/d4cp01838a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
As a derivative of the two-dimensional material family, two-dimensional Janus materials have garnered widespread attention in recent years. Consequently, in this work, we systematically investigated the stability, electronic properties, photocatalytic properties, optical properties, and carrier mobility of SPtAZ2 (A = Si and Ge; Z = N, P, and As) monolayers using first-principles calculations. In the equilibrium state, we identified four stable structures that exhibited the properties of indirect band gap semiconductors using the HSE06 hybrid functional. Through the exploration of the photocatalytic and optical properties of these four stable structures, we observed that SPtSiN2, SPtSiP2, and SPtGeAs2 monolayers possess favorable band edge positions, high solar-to-hydrogen efficiency (up to 30.74%), and light absorption efficiency, thus endowing these three structures with commendable photocatalytic and light absorption performance. We additionally calculated the carrier mobility of these three structures and identified significant differences in electron and hole mobilities in the same direction, facilitating the effective separation of electrons and holes. Finally, we explored the effects of biaxial strain on the electronic properties, photocatalysis, and light absorption of stable SPtAZ2 monolayers. Our research results not only expand the 2D Janus material family, but also successfully predict a type of photocatalyst capable of utilizing visible light for overall water splitting.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Physics, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yao He
- Department of Physics, Yunnan University, Kunming 650091, People's Republic of China.
| | - Kai Xiong
- Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|
3
|
Yang M, Huang H, Zhao W. Novel two-dimensional HfSi 2N 4 monolayer with excellent bandgap modulation and electronic properties modulation. J Mol Model 2024; 30:238. [PMID: 38954080 DOI: 10.1007/s00894-024-06042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The bandgap modulation and electronic properties modulation of two-dimensional HfSi2N4 monolayer induced by strain, electric field and atomic adsorption are studied by first principles. The HfSi2N4 monolayer was found to be dynamically, thermally, and mechanically stable at equilibrium, and it is a direct semiconductor with a bandgap of 1.87 eV. The bandgap of the HfSi2N4 monolayer can be precisely modulated by strain. Under the action of strain, HfSi2N4 monolayer not only transforms from direct semiconductor to indirect semiconductor, but also improves the absorption of visible light. An external electric field in the 0-0.5 eV/Å range can also modulate the bandgap of HfSi2N4 monolayer from 1.87 eV to 0 eV, and most importantly, at an external electric field of 0.5 eV/Å, HfSi2N4 monolayer shows the characteristics of spin gapless semiconductor. The calculated adsorption energy shows that the structures of H, O and F atoms adsorbed by HfSi2N4 monolayer can all exist stably. The bandgap of the configuration after adsorption of O and F atoms is significantly reduced compared with that of HfSi2N4 monolayer. Furthermore, the HfSi2N4 monolayer after adsorption of H and F atoms is transformed into a magnetic semiconductor. METHOD: All calculations were performed using Vienna ab initial simulation package, The electronic structure, mechanical properties, electronic properties and other properties were carried out using generalized gradient approximation (GGA-PBE), supplemented by HSE06 and GGA + U. The total-energy and force convergence are less than 10-6 eV and 0.001 eV/Å, respectively. The vacuum on the z-axis is selected 20 Å. The vdW interactions were corrected using the Grimme scheme (DFT-D3).
Collapse
Affiliation(s)
- Mingyang Yang
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| | - Haiming Huang
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China.
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei University of Automotive Technology, Shiyan, 442002, China.
| | - Wenyu Zhao
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| |
Collapse
|
4
|
Gao Z, He Y, Xiong K. Two-dimensional SPdAZ 2 (A = Si, Ge; Z = N, P, As) monolayers with an intrinsic electric field for high-performance photocatalysis. Phys Chem Chem Phys 2023; 26:185-197. [PMID: 38053430 DOI: 10.1039/d3cp04936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Two-dimensional materials exhibiting exceptional photocatalytic properties and a low carrier recombination rate have garnered significant attention. However, such attributes are relatively scarce among conventional two-dimensional materials. Two-dimensional Janus materials, owing to their intrinsic electric field, hold substantial promise in the realm of photocatalysis. In this study, we conducted a comprehensive investigation of the electronic, optical and photocatalytic properties, as well as the carrier mobility of SPdAZ2 (A = Si, Ge; Z = N, P, As) monolayers employing first-principles calculations. Employing the HSE06 hybrid density functional, we discovered that all six structures exhibit semiconductor characteristics with indirect band gaps under equilibrium conditions. Notably, SPdSiP2, SPdSiAs2, and SPdGeP2 monolayers displayed advantageous band edge positions, facilitating effective photocatalytic water decomposition. Furthermore, we computed the carrier mobility of SPdAZ2 monolayers, revealing significant variations in the electron and hole mobility along the same direction, which enhances the effective separation of electrons and holes. Finally, we explored the impact of biaxial strain and an applied electric field on the electronic properties, photocatalysis, and light absorption of SPdAZ2 monolayers. These compelling features underscore the broad potential applications of SPdAZ2 (A = Si, Ge; Z = N, P, As) monolayers in the realm of photocatalytic water decomposition.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Physics, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yao He
- Department of Physics, Yunnan University, Kunming 650091, People's Republic of China.
| | - Kai Xiong
- Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|
5
|
Oreshonkov AS, Sukhanova EV, Popov ZI. Phonon dynamics in MoSi 2N 4: insights from DFT calculations. Phys Chem Chem Phys 2023; 25:29831-29841. [PMID: 37888343 DOI: 10.1039/d3cp02921b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We have reported the density functional theory investigations on the monolayered, 2 layered and bulk MoSi2N4 in three structural modifications called α1 [Y.-L. Hong, et al., Chemical Vapor Deposition of Layered Two-Dimensional MoSi2N4 Materials, Science, 2020, 369(6504), 670-674, DOI: 10.1126/science.abb7023], α2 and α3 [Y. Yin, Q. Gong, M. Yi and W. Guo, Emerging Versatile Two-Dimensional MoSi2N4 Family, Adv. Funct. Mater., 2023, 2214050, DOI: 10.1002/adfm.202214050]. We showed that in the case of monolayers the difference in total energies is less than 0.1 eV between α1 and α3 phases, and less than 0.2 eV between α1 and α2 geometries. The most energetically favorable layer stacking for the bulk structures of each phase was investigated. All considered modifications are dynamically stable from a single layer to a bulk structure in energetically favorable stacking. Raman spectra for the monolayered, 2 layered and bulk structures were simulated and the vibrational analysis was performed. The main difference in the obtained spectra is associated with the position of the strongest band which depends on the Mo-N bond length. According to the obtained data, we can conclude that the Raman line at 348 cm-1 in the experimental spectra of MoSi2N4 can have more complex explanation than just Γ-point Raman-active vibration as was discussed before in [Y.-L. Hong, et al., Chemical Vapor Deposition of Layered Two-Dimensional MoSi2N4 Materials, Science, 2020, 369(6504), 670-674, DOI: 10.1126/science.abb7023].
Collapse
Affiliation(s)
- A S Oreshonkov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia
- Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia.
- School of Engineering and Construction, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - E V Sukhanova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russia
| | - Z I Popov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
6
|
Gao Z, He Y, Xiong K. Strain and electric field induced electronic property modifications in two-dimensional Janus SZrAZ 2 (A = Si, Ge; Z = P, As) monolayers. Dalton Trans 2023; 52:15918-15927. [PMID: 37840521 DOI: 10.1039/d3dt02904b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Recently, significant attention has been directed towards two-dimensional Janus materials owing to their unique structure and novel properties. In this work, we have introduced novel two-dimensional Janus monolayers, SZrAZ2 (A = Si, Ge; Z = P, As), through first principles. Our primary focus was the investigation of the controllable electronic properties exhibited by the Janus SZrAZ2 structures under the influence of strain and an external electric field. Our research findings indicate the dynamic and thermodynamic stability of Janus SZrAZ2 (A = Si, Ge; Z = P, As) monolayers. In the equilibrium state, these monolayers exhibit properties of an indirect band gap semiconductor. When subjected to biaxial strain and an external electric field, we observed that the dependency of SZrSiAs2 and SZrGeAs2 monolayers on an external electric field is very weak. Their electronic properties can only be modulated by applying biaxial strain. For SZrSiP2 and SZrGeP2 monolayers, their electronic properties can be modulated under biaxial strain and an external electric field, resulting in a transition from semiconducting to metallic behavior. Finally, we calculated the carrier mobility of these four structures and observed that the SZrGeAs2 monolayer exhibits a hole mobility of up to 597.52 cm2 s-1 V-1 in the x-direction, whereas the SZrSiP2 monolayer demonstrates an electron mobility of up to 479.30 cm2 s-1 V-1 in the y-direction. In the x-direction, the electron mobility of SZrSiAs2 and SZrGeP2 monolayers was measured to be 189.88 and 528.44 cm2 s-1 V-1, respectively. These values are greater than or equivalent to that of experimentally synthesized MoS2 (∼200 cm2 s-1 V-1). Our research lays the foundation for utilizing two-dimensional Janus materials in electronic devices.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Physics, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yao He
- Department of Physics, Yunnan University, Kunming 650091, People's Republic of China.
| | - Kai Xiong
- Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|
7
|
Noor U, Mughal MF, Ahmed T, Farid MF, Ammar M, Kulsum U, Saleem A, Naeem M, Khan A, Sharif A, Waqar K. Synthesis and applications of MXene-based composites: a review. NANOTECHNOLOGY 2023; 34:262001. [PMID: 36972572 DOI: 10.1088/1361-6528/acc7a8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
Recently, there has been considerable interest in a new family of transition metal carbides, carbonitrides, and nitrides referred to as MXenes (Ti3C2Tx) due to the variety of their elemental compositions and surface terminations that exhibit many fascinating physical and chemical properties. As a result of their easy formability, MXenes may be combined with other materials, such as polymers, oxides, and carbon nanotubes, which can be used to tune their properties for various applications. As is widely known, MXenes and MXene-based composites have gained considerable prominence as electrode materials in the energy storage field. In addition to their high conductivity, reducibility, and biocompatibility, they have also demonstrated outstanding potential for applications related to the environment, including electro/photocatalytic water splitting, photocatalytic carbon dioxide reduction, water purification, and sensors. This review discusses MXene-based composite used in anode materials, while the electrochemical performance of MXene-based anodes for Li-based batteries (LiBs) is discussed in addition to key findings, operating processes, and factors influencing electrochemical performance.
Collapse
Affiliation(s)
- Umar Noor
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Mughal
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University Islamabad, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Fayyaz Farid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ammar
- Department of Chemical Engineering Technology, Government College University, Faisalabad 38000, Pakistan
| | - Umme Kulsum
- Department of Chemistry, Aligarh Muslim University, 202002, Aligarh, India
| | - Amna Saleem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Mahnoor Naeem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Aqsa Khan
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Ammara Sharif
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| |
Collapse
|
8
|
Liu MY, He Y, Li X, Xiong K. Tuning of the electronic and photocatalytic properties of Janus WSiGeZ 4 (Z = N, P, and As) monolayers via strain engineering. Phys Chem Chem Phys 2023; 25:7278-7288. [PMID: 36810916 DOI: 10.1039/d2cp05224e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, MA2Z4 materials have received tremendous attention due to their amazing electronic, spintronic, and optoelectronic properties. In this work, we propose a class of 2D Janus materials WSiGeZ4 (Z = N, P, and As). It was found that their electronic and photocatalytic properties are sensitive to the change of the Z element. Biaxial strain results in an indirect-direct band gap transition in WSiGeN4 and a semiconductor-metal transition in WSiGeP4 and WSiGeAs4. Comprehensive studies demonstrate that these transitions as well as valley-contrasting physics are closely related to the crystal field induced orbital distribution. By taking into account several features of the excellent photocatalysts reported for water splitting, we predict three promising photocatalytic materials WSi2N4, WGe2N4, and WSiGeN4. Their optical and photocatalytic properties can be well modulated by applying biaxial strain. Our work not only provides a class of potential electronic and optoelectronic materials but also enriches the study of Janus MA2Z4 materials.
Collapse
Affiliation(s)
- Ming-Yang Liu
- School of Physics and Electronic Science, Chuxiong Normal University, Chuxiong 675000, P. R. China.
| | - Yao He
- Department of Physics, Yunnan University, Kunming 650091, P. R. China
| | - Xuan Li
- College of Physics and Information Engineering, Zhaotong University, Zhaotong 657000, P. R. China
| | - Kai Xiong
- Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
9
|
Xu T, Wang Y, Xiong Z, Wang Y, Zhou Y, Li X. A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. NANO-MICRO LETTERS 2022; 15:6. [PMID: 36472760 PMCID: PMC9727130 DOI: 10.1007/s40820-022-00976-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
Collapse
Affiliation(s)
- Tianjie Xu
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yujin Zhou
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- Center for International Cooperation On Designer Low-Carbon and Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
10
|
Sun F, Tang Q, Jiang DE. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Sahoo M, Ray A, Singh N. Theoretical Insights into the Hydrogen Evolution Reaction on VGe 2N 4 and NbGe 2N 4 Monolayers. ACS OMEGA 2022; 7:7837-7844. [PMID: 35284711 PMCID: PMC8908508 DOI: 10.1021/acsomega.1c06730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 06/07/2023]
Abstract
Catalytically active sites at the basal plane of two-dimensional monolayers for hydrogen evolution reaction (HER) are important for the mass production of hydrogen. The structural, electronic, and catalytic properties of two-dimensional VGe2N4 and NbGe2N4 monolayers are demonstrated using the first-principles calculations. The dynamical stability is confirmed through phonon calculations, followed by computation of the electronic structure employing the hybrid functional HSE06 and PBE+U. Here, we introduced two strategies, strain and doping, to tune their catalytic properties toward HER. Our results show that the HER activity of VGe2N4 and NbGe2N4 monolayers are sensitive to the applied strain. A 3% tensile strain results in the adsorption Gibbs free energy (ΔG H*) of hydrogen for the NbGe2N4 monolayer of 0.015 eV, indicating better activity than Pt (-0.09 eV). At the compressive strain of 3%, the ΔG H* value is -0.09 eV for the VGe2N4 monolayer, which is comparable to that of Pt. The exchange current density for the P doping at the N site of the NbGe2N4 monolayer makes it a promising electrocatalyst for HER (ΔG H* = 0.11 eV). Our findings imply the great potential of the VGe2N4 and NbGe2N4 monolayers as electrocatalysts for HER activity.
Collapse
Affiliation(s)
| | - Avijeet Ray
- Department
of Physics, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Nirpendra Singh
- Department of Physics and Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
12
|
Nguyen ST, Cuong PV, Cuong N, Nguyen CV. First principles prediction of two-dimensional Janus XMoGeN2 (X = S, Se and Te) materials. Dalton Trans 2022; 51:14338-14344. [DOI: 10.1039/d2dt02222b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the successful synthesis of two-dimensional MoSi$_2$N$_4$ [Science 369 (2020) 670-674] and Janus MoSSe [Nature Nanotechnol. 12 (2017) 744-749], in this work, we propose a novel 2D Janus XMoGeN$_2$...
Collapse
|