1
|
Herrera Rodríguez LE, Kananenka AA. A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics. J Chem Phys 2024; 161:171101. [PMID: 39484891 DOI: 10.1063/5.0232871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
In this Communication, we demonstrate that a deep artificial neural network based on a transformer architecture with self-attention layers can predict the long-time population dynamics of a quantum system coupled to a dissipative environment provided that the short-time population dynamics of the system is known. The transformer neural network model developed in this work predicts the long-time dynamics of spin-boson model efficiently and very accurately across different regimes, from weak system-bath coupling to strong coupling non-Markovian regimes. Our model is more accurate than classical forecasting models, such as recurrent neural networks, and is comparable to the state-of-the-art models for simulating the dynamics of quantum dissipative systems based on kernel ridge regression.
Collapse
Affiliation(s)
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
2
|
Singh K, Lee KH, Peláez D, Bande A. Accelerating wavepacket propagation with machine learning. J Comput Chem 2024; 45:2360-2373. [PMID: 39031712 DOI: 10.1002/jcc.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024]
Abstract
In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional solution of the time-dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed-up from the FNO method allows for its combination with the Markov-chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.
Collapse
Affiliation(s)
- Kanishka Singh
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ka Hei Lee
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Daniel Peláez
- CNRS, Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, Orsay, France
| | - Annika Bande
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
3
|
Zhu Y, Peng J, Xu C, Lan Z. Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation. J Phys Chem Lett 2024; 15:9601-9619. [PMID: 39270134 DOI: 10.1021/acs.jpclett.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The all-atomic full-dimensional-level simulations of nonadiabatic molecular dynamics (NAMD) in large realistic systems has received high research interest in recent years. However, such NAMD simulations normally generate an enormous amount of time-dependent high-dimensional data, leading to a significant challenge in result analyses. Based on unsupervised machine learning (ML) methods, considerable efforts were devoted to developing novel and easy-to-use analysis tools for the identification of photoinduced reaction channels and the comprehensive understanding of complicated molecular motions in NAMD simulations. Here, we tried to survey recent advances in this field, particularly to focus on how to use unsupervised ML methods to analyze the trajectory-based NAMD simulation results. Our purpose is to offer a comprehensive discussion on several essential components of this analysis protocol, including the selection of ML methods, the construction of molecular descriptors, the establishment of analytical frameworks, their advantages and limitations, and persistent challenges.
Collapse
Affiliation(s)
- Yifei Zhu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Lin K, Peng J, Xu C, Gu FL, Lan Z. Trajectory Propagation of Symmetrical Quasi-classical Dynamics with Meyer-Miller Mapping Hamiltonian Using Machine Learning. J Phys Chem Lett 2022; 13:11678-11688. [PMID: 36511563 DOI: 10.1021/acs.jpclett.2c02159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The long short-term memory recurrent neural network (LSTM-RNN) approach is applied to realize the trajectory-based nonadiabatic dynamics within the framework of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (MM-SQC). After construction, the LSTM-RNN model allows us to propagate the entire trajectory evolutions of all involved degrees of freedoms (DOFs) from initial conditions. The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models and three Tully's scattering models. It indicates that the LSTM-RNN model perfectly captures the dynamical information on the trajectory evolution in the MM-SQC dynamics. Our work proposes a novel machine learning approach in the simulation of trajectory-based nonadiabatic dynamic of complex systems with a large number of DOFs.
Collapse
Affiliation(s)
- Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Tsai ST, Fields E, Xu Y, Kuo EJ, Tiwary P. Path sampling of recurrent neural networks by incorporating known physics. Nat Commun 2022; 13:7231. [PMID: 36433982 PMCID: PMC9700810 DOI: 10.1038/s41467-022-34780-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Recurrent neural networks have seen widespread use in modeling dynamical systems in varied domains such as weather prediction, text prediction and several others. Often one wishes to supplement the experimentally observed dynamics with prior knowledge or intuition about the system. While the recurrent nature of these networks allows them to model arbitrarily long memories in the time series used in training, it makes it harder to impose prior knowledge or intuition through generic constraints. In this work, we present a path sampling approach based on principle of Maximum Caliber that allows us to include generic thermodynamic or kinetic constraints into recurrent neural networks. We show the method here for a widely used type of recurrent neural network known as long short-term memory network in the context of supplementing time series collected from different application domains. These include classical Molecular Dynamics of a protein and Monte Carlo simulations of an open quantum system continuously losing photons to the environment and displaying Rabi oscillations. Our method can be easily generalized to other generative artificial intelligence models and to generic time series in different areas of physical and social sciences, where one wishes to supplement limited data with intuition or theory based corrections.
Collapse
Affiliation(s)
- Sun-Ting Tsai
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Eric Fields
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
| | - Yijia Xu
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD, 20742, USA
| | - En-Jui Kuo
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD, 20742, USA
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
6
|
Tang D, Jia L, Shen L, Fang WH. Fewest-Switches Surface Hopping with Long Short-Term Memory Networks. J Phys Chem Lett 2022; 13:10377-10387. [PMID: 36317657 DOI: 10.1021/acs.jpclett.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mixed quantum-classical dynamical simulation is essential for studying nonadiabatic phenomena in photophysics and photochemistry. In recent years, many machine learning models have been developed to accelerate the time evolution of the nuclear subsystem. Herein, we implement long short-term memory (LSTM) networks as a propagator to accelerate the time evolution of the electronic subsystem during the fewest-switches surface hopping (FSSH) simulations. A small number of reference trajectories are generated using the original FSSH method, and then the LSTM networks can be built, accompanied by careful examination of typical LSTM-FSSH trajectories that employ the same initial condition and random numbers as the corresponding reference. The constructed network is applied to FSSH to further produce a trajectory ensemble to reveal the mechanism of nonadiabatic processes. Taking Tully's three models as test systems, we qualitatively reproduced the collective results. This work demonstrates that LSTM can be applied to the most popular surface hopping simulations.
Collapse
Affiliation(s)
- Diandong Tang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Luyang Jia
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai 265505, Shandong, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai 265505, Shandong, China
| |
Collapse
|
7
|
Lin K, Peng J, Xu C, Gu FL, Lan Z. Automatic Evolution of Machine-Learning-Based Quantum Dynamics with Uncertainty Analysis. J Chem Theory Comput 2022; 18:5837-5855. [DOI: 10.1021/acs.jctc.2c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| |
Collapse
|
8
|
Sajjan M, Li J, Selvarajan R, Sureshbabu SH, Kale SS, Gupta R, Singh V, Kais S. Quantum machine learning for chemistry and physics. Chem Soc Rev 2022; 51:6475-6573. [PMID: 35849066 DOI: 10.1039/d2cs00203e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Machine learning (ML) has emerged as a formidable force for identifying hidden but pertinent patterns within a given data set with the objective of subsequent generation of automated predictive behavior. In recent years, it is safe to conclude that ML and its close cousin, deep learning (DL), have ushered in unprecedented developments in all areas of physical sciences, especially chemistry. Not only classical variants of ML, even those trainable on near-term quantum hardwares have been developed with promising outcomes. Such algorithms have revolutionized materials design and performance of photovoltaics, electronic structure calculations of ground and excited states of correlated matter, computation of force-fields and potential energy surfaces informing chemical reaction dynamics, reactivity inspired rational strategies of drug designing and even classification of phases of matter with accurate identification of emergent criticality. In this review we shall explicate a subset of such topics and delineate the contributions made by both classical and quantum computing enhanced machine learning algorithms over the past few years. We shall not only present a brief overview of the well-known techniques but also highlight their learning strategies using statistical physical insight. The objective of the review is not only to foster exposition of the aforesaid techniques but also to empower and promote cross-pollination among future research in all areas of chemistry which can benefit from ML and in turn can potentially accelerate the growth of such algorithms.
Collapse
Affiliation(s)
- Manas Sajjan
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Junxu Li
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA
| | - Raja Selvarajan
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA
| | - Shree Hari Sureshbabu
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN-47907, USA
| | - Sumit Suresh Kale
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Rishabh Gupta
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Vinit Singh
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sabre Kais
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA.,Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
9
|
Abstract
Nonadiabatic quantum dynamics is important for understanding light-harvesting processes, but its propagation with traditional methods can be rather expensive. Here we present a one-shot trajectory learning approach that allows us to directly make an ultrafast prediction of the entire trajectory of the reduced density matrix for a new set of such simulation parameters as temperature and reorganization energy. The whole 10-ps-long propagation takes 70 ms as we demonstrate on the comparatively large quantum system, the Fenna-Matthews-Olsen (FMO) complex. Our approach also significantly reduces time and memory requirements for training.
Collapse
Affiliation(s)
- Arif Ullah
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Ullah A, Dral PO. Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics. Nat Commun 2022; 13:1930. [PMID: 35411054 PMCID: PMC9001686 DOI: 10.1038/s41467-022-29621-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/16/2022] [Indexed: 01/20/2023] Open
Abstract
Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs) is essential for understanding the natural processes and design of highly-efficient photovoltaic devices. LHCs are open systems, where quantum effects may play a crucial role for almost perfect utilization of solar energy. Simulation of energy transfer with inclusion of quantum effects can be done within the framework of dissipative quantum dynamics (QD), which are computationally expensive. Thus, artificial intelligence (AI) offers itself as a tool for reducing the computational cost. Here we suggest AI-QD approach using AI to directly predict QD as a function of time and other parameters such as temperature, reorganization energy, etc., completely circumventing the need of recursive step-wise dynamics propagation in contrast to the traditional QD and alternative, recursive AI-based QD approaches. Our trajectory-learning AI-QD approach is able to predict the correct asymptotic behavior of QD at infinite time. We demonstrate AI-QD on seven-sites Fenna-Matthews-Olson (FMO) complex.
Collapse
Affiliation(s)
- Arif Ullah
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
11
|
How WB, Wang B, Chu W, Kovalenko SM, Tkatchenko A, Prezhdo O. Dimensionality Reduction in Machine Learning for Nonadiabatic Molecular Dynamics: Effectiveness of Elemental Sublattices in Lead Halide Perovskites. J Chem Phys 2022; 156:054110. [DOI: 10.1063/5.0078473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei Bin How
- Chemistry, Nanyang Technological University School of Physical and Mathematical Sciences, Singapore
| | - Bipeng Wang
- University of Southern California, United States of America
| | - Weibin Chu
- Chemistry, University of Southern California, United States of America
| | | | | | - Oleg Prezhdo
- Chemistry, University of Southern California, United States of America
| |
Collapse
|
12
|
Wu D, Hu Z, Li J, Sun X. Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network. J Chem Phys 2021; 155:224104. [PMID: 34911307 DOI: 10.1063/5.0073689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Modeling nonadiabatic dynamics in complex molecular or condensed-phase systems has been challenging, especially for the long-time dynamics. In this work, we propose a time series machine learning scheme based on the hybrid convolutional neural network/long short-term memory (CNN-LSTM) framework for predicting the long-time quantum behavior, given only the short-time dynamics. This scheme takes advantage of both the powerful local feature extraction ability of CNN and the long-term global sequential pattern recognition ability of LSTM. With feature fusion of individually trained CNN-LSTM models for the quantum population and coherence dynamics, the proposed scheme is shown to have high accuracy and robustness in predicting the linearized semiclassical and symmetrical quasiclassical mapping dynamics as well as the mixed quantum-classical Liouville dynamics of various spin-boson models with learning time up to 0.3 ps. Furthermore, if the hybrid network has learned the dynamics of a system, this knowledge is transferable that could significantly enhance the accuracy in predicting the dynamics of a similar system. The hybrid CNN-LSTM network is thus believed to have high predictive power in forecasting the nonadiabatic dynamics in realistic charge and energy transfer processes in photoinduced energy conversion.
Collapse
Affiliation(s)
- Daxin Wu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Jiebo Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Institute of Medical Photonics, Beihang University, Beijing 100191, China
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| |
Collapse
|