1
|
Dai S, Li XZ, Liu J, Zhang C, Hu J, Liu Z, Fang HH, Sun HB, Xu B, Tian W. Conformation-Confined Organic Butterfly-Molecule with High Photoluminescence Efficiency, Deep-Blue Amplified Spontaneous Emission, and Unique Piezochromic Luminescence. Angew Chem Int Ed Engl 2025; 64:e202414960. [PMID: 39282722 DOI: 10.1002/anie.202414960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Indexed: 11/01/2024]
Abstract
Organic fluorophores with tunable π-conjugated paths have attracted considerable attention owing to their diverse properties and promising applications. Herein, we present a tailored butterfly-like molecule, 2,2'-(2,5-bis (2,2-diphenylvinyl)-1,4-phenylene)dinaphthalene (BDVPN), which exhibits diverse photophysical features in its two polymorphs. The BP phase crystal, with its "aligned wings" conformation, possesses emissive characteristics that are nearly identical to those in dilute solutions. In contrast, the BN phase crystal, which adopts an "orthogonal wings" conformation, exhibits an unusual hypsochromic-shifted emission compared to its dilute solution counterparts. This intriguing hypsochromic-shifted emission originates from the reduction in the effective conjugated length of the molecular skeleton. Notably, BN phase crystals also exhibit exceptional optical performance, featuring high-efficiency emission (76.6 %), low-loss optical waveguides (0.571 dB mm-1), deep-blue amplified spontaneous emission (ASE) with narrow full width at half maximum (FWHM: 6.4 nm), and a unique 200 nm bathochromic shift of piezochromic luminescence.
Collapse
Affiliation(s)
- Shuting Dai
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130021, P. R. China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiawen Liu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130021, P. R. China
| | - Chenchen Zhang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130021, P. R. China
| | - Jiasong Hu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130021, P. R. China
| | - Zhaoyang Liu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130021, P. R. China
| | - Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Bin Xu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130021, P. R. China
| | - Wenjing Tian
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130021, P. R. China
| |
Collapse
|
2
|
Xu J, Deng S, Wei P. Engineering Supramolecular [ c2]Daisy Chains for Structural Hierarchy-Dependent Emission and Photoreactivity. J Am Chem Soc 2024; 146:34176-34187. [PMID: 39601659 DOI: 10.1021/jacs.4c14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Organic photofunctional materials exhibit properties that are highly dependent on their structural hierarchy. The variability in intermolecular interactions and molecular packing in both monomeric and aggregated states complicates the controllability and predictability of their photophysical and photochemical properties. To address this challenge, we developed three luminescent supramolecular [c2]daisy chains as simplified models. The rigid and mutually embedded linkers between the host and guests facilitate the formation of [c2]daisy chains with balanced stability and dynamics. Additionally, the close and tunable π-π interactions between the luminescent units provide a structural basis for fluorescence modulation and topochemical photoreactions. We performed two sets of comparisons to assess luminescence and photoreactivity: one comparison involves molecules with and without crown ethers, and the other contrasting their behavior under UV excitation in solution (diluted and concentrated) versus in the aggregated and crystalline states. Specifically, in the crystalline state, [c2]daisy chains effectively stabilize molecular packing, leading to highly efficient dimer-dependent emission. This unique structure remains in both solution (c > 1 mM) and aggregated states, which can direct the reaction pathway toward rapid and efficient intermolecular photocycloaddition upon UV irradiation. However, in highly diluted solution (10 μM), [c2]daisy chains dissociate into monomers, which further undergo intramolecular photocyclization. This study provides new insights into employing supramolecular strategies for controllable molecular aggregation and the fine-tuning of photoreaction pathways and kinetics.
Collapse
Affiliation(s)
- Jiahui Xu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| | - Shengyong Deng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| | - Peifa Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| |
Collapse
|
3
|
Xiong Z, Li Y, Yuan Z, Liang J, Wang S, Yang X, Xiang S, Lv Y, Chen B, Zhang Z. Switchable Anisotropic/Isotropic Photon Transport in a Double-Dipole Metal-Organic Framework via Radical-Controlled Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314005. [PMID: 38375769 DOI: 10.1002/adma.202314005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Directional control of photon transport at micro/nanoscale holds great potential in developing multifunctional optoelectronic devices. Here, the switchable anisotropic/isotropic photon transport is reported in a double-dipole metal-organic framework (MOF) based on radical-controlled energy transfer. Double-dipole MOF microcrystals with transition dipole moments perpendicular to each other have been achieved by the pillared-layer coordination strategy. The energy transfer between the double dipolar chromophores can be modulated by the photogenerated radicals, which permits the in situ switchable output on both polarization (isotropy/anisotropy state) and wavelength information (blue/red-color emission). On this basis, the original MOF microcrystal with isotropic polarization state displays the isotropic photon transport and similar reabsorption losses at various directions, while the radical-affected MOF microcrystal with anisotropic polarization state shows the anisotropic photon transport with distinct reabsorption losses at different directions, finally leading to the in situ switchable anisotropic/isotropic photon transport. These results offer a novel strategy for the development of MOF-based photonic devices with tunable anisotropic performance.
Collapse
Affiliation(s)
- Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shuaiqi Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xue Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
4
|
Gou X, Zhao HY, Huang Z, Yang Y, Jin LY. Donor-Acceptor Assembly of Amphiphilic Molecules Based on 9,10-Distyrylanthracene Derivatives with Terminal Naphthalene Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7106-7113. [PMID: 38498422 DOI: 10.1021/acs.langmuir.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Amphiphilic rod-coil compounds have excellent photophysical properties and can be assembled into supramolecular nanostructures of different sizes in water or polar solvents. Herein, we synthesized the amphiphilic compounds 2N-DSA, 4N-DSA, and 6N-DSA with 9,10-distyrylanthracene (DSA) as the core and a naphthalene unit as the terminal group that connected DSA through a tetraethylene glycol chain. These compounds have excellent aggregation-induced emission (AIE) properties in aqueous solution and are assembled into worm-like fragments or different sizes of spherical assemblies, defending the volume ratio of the rod to coil segments. Notably, the donor-acceptor interaction between DSA and electron- deficient compounds 2,4,6-trinitrophenol (TNP), 2,4,5,7-tetranitrofluorenone (TNF), and tetraethylene glycol dinitrobenzoate (TGDNB) forms a charge transfer complex, which can be used as a nanoreactor to improve the yield of the Suzuki coupling reaction about 8-10 times. The experimental results reveal that the synergy effect of the donor-acceptor, intermolecular π-π stacking, and hydrophobic-hydrophilic interactions significantly influences the morphology of aggregates and the efficiency of the nanoreactor.
Collapse
Affiliation(s)
- Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhegang Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuntian Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Saha BK, Nath NK, Thakuria R. Polymorphs with Remarkably Distinct Physical and/or Chemical Properties. CHEM REC 2023; 23:e202200173. [PMID: 36166697 DOI: 10.1002/tcr.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Polymorphism in crystals is known since 1822 and the credit goes to Mitscherlich who realized the existence of different crystal structures of the same compound while working with some arsenate and phosphate salts. Later on, this phenomenon was observed also in organic crystals. With the advent of different technologies, especially the easy availability of single crystal XRD instruments, polymorphism in crystals has become a common phenomenon. Almost 37 % of compounds (single component) are polymorphic to date. As the energies of the different polymorphic forms are very close to each other, small changes in crystallization conditions might lead to different polymorphic structures. As a result, sometimes it is difficult to control polymorphism. For this reason, it is considered to be a nuisance to crystal engineering. It has been realized that the property of a material depends not only on the molecular structure but also on its crystal structure. Therefore, it is not only of interest to academia but also has widespread applications in the materials science as well as pharmaceutical industries. In this review, we have discussed polymorphism which causes significant changes in materials properties in different fields of solid-state science, such as electrical, magnetic, SHG, thermal expansion, mechanical, luminescence, color, and pharmaceutical. Therefore, this review will interest researchers from supramolecular chemistry, materials science as well as medicinal chemistry.
Collapse
Affiliation(s)
- Binoy K Saha
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Naba K Nath
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, Meghalaya 793003, India
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati, 781014, India
| |
Collapse
|
6
|
Yu F, Zhang X, Zhao H, Jiang Z, Wang T, Wang N, Huang X, Zhou L, Hao H. Enhanced luminescence of single-benzene fluorescent molecules through halogen bond cocrystals. CrystEngComm 2022. [DOI: 10.1039/d2ce00229a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic single fluorescent molecules often suffer from aggregation-induced quenching effect under solid-state conditions, especially for red-emissive molecules, due to the flat rigid molecular framework and strong π-π interaction. Cocrystal engineering...
Collapse
|
7
|
Wang J, Xu S, Xue X, zhao L, Xu W. Tunable multiple light emissions of core-shell structures based on rare earth ions doped on the surfaces of organic cocrystals. Phys Chem Chem Phys 2022; 24:19799-19805. [DOI: 10.1039/d2cp02288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge transfer (CT) interactions play a vital role in tuning the luminescence of organic crystals. Enhanced energy transfer (ET) effect in rare-earth (RE) ions is a significant method to...
Collapse
|
8
|
Mandal A. Tuning p-type to n-type Semiconductor Nature by Charge Transfer Cocrystallization: Effect of Transfer Integral vs. Reorganization Energy. CrystEngComm 2022. [DOI: 10.1039/d2ce00006g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, 1:2 mixed stack (··DADA·· arrangement) donor acceptor cocrystal comprised of hole transport material CBP (4,4ʹ-bis(9H-carbazole-9-yl)biphenyl) as the donor (D), and TCNQ (7,7ʹ,8,8ʹ-tetracyano-1,4-quinodimethane) as the acceptor (A) was...
Collapse
|
9
|
Barman D, Annadhasan M, Chandrasekar R, Iyer PK. Hot-exciton harvesting via through-space single-molecule based white-light emission and optical waveguides. Chem Sci 2022; 13:9004-9015. [PMID: 36091201 PMCID: PMC9365089 DOI: 10.1039/d2sc02172b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022] Open
Abstract
Through-space donor–alkyl bridge–acceptor (D–σ–A) luminogens are developed as new organic single-molecule white light emitters (OSMWLEs) involving multiple higher lying singlet (Sn) and triplet (Tm) states (hot-excitons). Experimental and theoretical results confirm the origin of white light emission due to the co-existence of prompt fluorescence from locally excited states, thermally activated delayed fluorescence (TADF), and fast/slow dual phosphorescence color mixing simultaneously. Notably, the fast phosphorescence was observed due to trace amounts of isomeric impurities from commercial carbazole, while H-/J-aggregation resulted in slow phosphorescence. Crystal structure-packing-property analysis revealed that the alkyl chain length induced supramolecular self-assembly greatly influenced the solid-state optical properties. Remarkably, the 1D-microrod crystals of OSMWLEs demonstrated the first examples of triplet harvesting waveguides by self-guiding the generated phosphorescence through light propagation along their longitudinal axis. This work thus highlights an uncommon design strategy to achieve multi-functional OSMWLEs with in-depth mechanistic insights and optical waveguiding applications making them a potentially new class of white emissive materials. Through-space donor–alkyl bridge–acceptor multifunctional organic single molecules that simultaneously displayed white light emission, thermally activated delayed fluorescence, room temperature dual phosphorescence and optical wave-guiding properties.![]()
Collapse
Affiliation(s)
- Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Mari Annadhasan
- School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Gachibowli, Prof. C. R. Rao Road, Hyderabad-500046, India
| | - Rajadurai Chandrasekar
- School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Gachibowli, Prof. C. R. Rao Road, Hyderabad-500046, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|