1
|
Wang Y, Zhang IY, Xu X. How accurate can Kohn-Sham density functional be for both main-group and transition metal reactions. J Comput Chem 2024; 45:2878-2884. [PMID: 39211974 DOI: 10.1002/jcc.27488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Achieving chemical accuracy in describing reactions involving both main-group elements and transition metals poses a substantial challenge for density functional approximations (DFAs), primarily due to the significantly different behaviors for electrons moving in the s,p-orbitals or in the d,f-orbitals. MOR41, a representative dataset of transition metal chemistry, has highlighted the PWPB95-D3(BJ) functional, a B2PLYP-type doubly hybrid (bDH) approximation equipped with an empirical dispersion correction, as the leading functional thus far (Dohm et al., J Chem Theory Comput 2018;14: 2596-2608). However, this functional is not among the top bDH methods for main-group chemistry (Goerigk et al., Phys Chem Chem Phys. 2017;19: 32184). Conversely, bDH methods such as DSD-BLYP-D3, proficient in main-group chemistry, often falter for transition metal chemistry. Herein, taking advantage of the home-made Rust-based Electronic-Structure Toolkits, we examine a suite of XYG3-type doubly hybrid (xDH) methods. We confirm that the trade-off in descriptive accuracy between main-group and transition metal systems persists within the realm of perturbation theory (PT2)-based xDH methods. Notably, however, our study ushers in a pivotal advance with the recently proposed renormalized xDH method, R-xDH7-SCC15. This method not only distinguishes itself among the elite methods for main-group chemistry, but also achieves an unprecedented accuracy for the MOR41 dataset, outperforming all other reported DFAs. The efficacy of R-xDH7-SCC15 stems from the successful integration of a renormalized PT2 correlation model (rPT2) and a machine-learning strong-correlation correction (SCC15), marking a significant step forward in the realm of computational chemistry.
Collapse
Affiliation(s)
- Yizhen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China
- Hefei National Laboratory, Hefei, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai, China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China
- Hefei National Laboratory, Hefei, China
| |
Collapse
|
2
|
Becke AD. A remarkably simple dispersion damping scheme and the DH24 double hybrid density functional. J Chem Phys 2024; 160:204118. [PMID: 38818895 DOI: 10.1063/5.0207682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
In recent papers, Becke et al. [J. Chem. Phys. 158, 151103 (2023)] and then Becke [J. Chem. Phys. 159, 241101 (2023)] have developed a novel double hybrid density functional, "DH23," whose terms are based on good local physics. Its 12 coefficients are trained on the GMTKN55 (general main-group thermochemistry, kinetics, and noncovalent interactions) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. The lowest GMTKN55 "WTMAD2" error to date for any hybrid or double hybrid density functional was obtained (1.73 kcal/mol for the revDH23 variant). Here, we simplify DH23 by introducing a dispersion damping scheme involving atomic numbers only and one global parameter. The resulting new functional, "DH24," performs as well as its predecessors.
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
3
|
Becke AD. Doubling down on density-functional theory. J Chem Phys 2023; 159:241101. [PMID: 38146827 DOI: 10.1063/5.0178236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
In a recent paper, Becke et al. [J. Chem. Phys. 158, 151103 (2023)] presented a novel double hybrid density functional, "DH23," whose terms are based on good physics. Its 12 coefficients were trained on the GMTKN55 (general main-group thermochemistry, kinetics, and noncovalent interactions) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. The lowest GMTKN55 "WTMAD2" error to date for any hybrid or double hybrid density functional was obtained (1.76 kcal/mol). Here, we make some revisions to DH23 and test its efficacy on reference data beyond GMTKN55, namely, organometallic reaction energies and barrier heights. The results confirm that DH23 is robust outside its training set. In the process, a slightly smaller GMTKN55 WTMAD2 of 1.73 kcal/mol is achieved.
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
4
|
Becke AD, Santra G, Martin JML. A double-hybrid density functional based on good local physics with outstanding performance on the GMTKN55 database. J Chem Phys 2023; 158:2882268. [PMID: 37094004 DOI: 10.1063/5.0141238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
In two recent papers [A. D. Becke, J. Chem. Phys. 156, 214101 (2022) and A. D. Becke, J. Chem. Phys. 157, 234102 (2022)], we compared two Kohn-Sham density functionals based on physical modeling and theory with the best density-functional power-series fits in the literature. The best error statistics reported to date for a hybrid functional on the general main-group thermochemistry, kinetics, and noncovalent interactions (GMTKN55) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)] were obtained. In the present work, additional second-order perturbation-theory terms are considered. The result is a 12-parameter double-hybrid density functional with the lowest GMTKN55 WTMAD2 "weighted total mean absolute deviation" error (1.76 kcal/mol) yet seen for any hybrid or double-hybrid density-functional approximation. We call it "DH23."
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Golokesh Santra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jan M L Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
5
|
Mehta N, Martin JML. Explicitly Correlated Double-Hybrid DFT: A Comprehensive Analysis of the Basis Set Convergence on the GMTKN55 Database. J Chem Theory Comput 2022; 18:5978-5991. [PMID: 36099641 PMCID: PMC9558368 DOI: 10.1021/acs.jctc.2c00426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/28/2022]
Abstract
Double-hybrid density functional theory (DHDFT) offers a pathway to accuracy approaching composite wavefunction approaches such as G4 theory. However, the Görling-Levy second-order perturbation theory (GLPT2) term causes them to partially inherit the slow ∝L-3 (with L the maximum angular momentum) basis set convergence of correlated wavefunction methods. This could potentially be remedied by introducing F12 explicit correlation: we investigate the basis set convergence of both DHDFT and DHDFT-F12 (where GLPT2 is replaced by GLPT2-F12) for the large and chemically diverse general main-group thermochemistry, kinetics, and noncovalent interactions (GMTKN55) benchmark suite. The B2GP-PLYP-D3(BJ) and revDSD-PBEP86-D4 DHDFs are investigated as test cases, together with orbital basis sets as large as aug-cc-pV5Z and F12 basis sets as large as cc-pVQZ-F12. We show that F12 greatly accelerates basis set convergence of DHDFs, to the point that even the modest cc-pVDZ-F12 basis set is closer to the basis set limit than cc-pV(Q+d)Z or def2-QZVPPD in orbital-based approaches, and in fact comparable in quality to cc-pV(5+d)Z. Somewhat surprisingly, aug-cc-pVDZ-F12 is not required even for the anionic subsets. In conclusion, DHDF-F12/VDZ-F12 eliminates concerns about basis set convergence in both the development and applications of double-hybrid functionals. Mass storage and I/O bottlenecks for larger systems can be circumvented by localized pair natural orbital approximations, which also exhibit much gentler system size scaling.
Collapse
Affiliation(s)
- Nisha Mehta
- Department of Molecular Chemistry and
Materials Science, Weizmann Institute of
Science, 7610001 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Molecular Chemistry and
Materials Science, Weizmann Institute of
Science, 7610001 Reḥovot, Israel
| |
Collapse
|
6
|
Ehlert S, Grimme S, Hansen A. Conformational Energy Benchmark for Longer n-Alkane Chains. J Phys Chem A 2022; 126:3521-3535. [PMID: 35616628 DOI: 10.1021/acs.jpca.2c02439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first benchmark set focusing on the conformational energies of highly flexible, long n-alkane chains, termed ACONFL. Unbranched alkanes are ubiquitous building blocks in nature, so the goal is to be able to calculate their properties most accurately to improve the modeling of, e.g., complex (biological) systems. Very accurate DLPNO-CCSD(T1)/CBS reference values are provided, which allow for a statistical meaningful evaluation of even the best available density functional methods. The performance of established and modern (dispersion corrected) density functionals is comprehensively assessed. The recently introduced r2SCAN-V functional shows excellent performance, similar to efficient composite DFT methods like B97-3c and r2SCAN-3c, which provide an even better cost-accuracy ratio, while almost reaching the accuracy of much more computationally demanding hybrid or double hybrid functionals with large QZ AO basis sets. In addition, we investigated the performance of common wave function methods, where MP2/CBS surprisingly performs worse compared to the simple D4 dispersion corrected Hartree-Fock. Furthermore, we investigate the performance of several semiempirical and force field methods, which are commonly used for the generation of conformational ensembles in multilevel workflows or in large scale molecular dynamics studies. Outstanding performance is obtained by the recently introduced general force field, GFN-FF, while other commonly applied methods like the universal force field yield large errors. We recommend the ACONFL as a helpful benchmark set for parametrization of new semiempirical or force field methods and machine learning potentials as well as a meaningful validation set for newly developed DFT or dispersion methods.
Collapse
Affiliation(s)
- Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
7
|
Santra G, Martin JML. Do Double-Hybrid Functionals Benefit from Regularization in the PT2 Term? Observations from an Extensive Benchmark. J Phys Chem Lett 2022; 13:3499-3506. [PMID: 35417181 PMCID: PMC9036584 DOI: 10.1021/acs.jpclett.2c00718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We put to the test a recent suggestion [Shee, J., et al. J. Phys. Chem. Lett. 2021, 12 (50), 12084-12097] that MP2 regularization might improve the performance of double-hybrid density functionals. Using the very large and chemically diverse GMTKN55 benchmark, we find that κ-regularization is indeed beneficial at lower percentages of Hartree-Fock exchange, especially if spin-component scaling is not applied [such as in B2GP-PLYP or ωB97M(2)]. This benefit dwindles for DSD and DOD functionals and vanishes entirely in the ∼70% HF exchange region optimal for them.
Collapse
|