1
|
Zhang Z, Xiong Q, Liu S. Enhanced Design of Kesterite Solar Cells through High-Throughput Screening and Machine Learning Approaches. J Phys Chem Lett 2024; 15:9795-9802. [PMID: 39323368 DOI: 10.1021/acs.jpclett.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Kesterite Cu2ZnSnS4 (CZTS) is regarded as one of the most promising materials for thin-film solar cells due to its high light absorption capability, composition of earth-abundant and nontoxic elements, and ease of low-cost mass production. Although the certified power conversion efficiency (PCE) of kesterite solar cells has exceeded 14%, this efficiency remains significantly below the Shockley-Queisser limit. In this study, we generated a Perdew-Burke-Ernzerhof (PBE) band gap data set encompassing 263 64-atom species for high-throughput screening by substituting elements at different sites in A2BCX4 quaternary kesterite materials. Additionally, we utilized a symbolic regression method based on genetic programming to explore the functional relationship among the oxidation state, ionic radius, and electronegativity of kesterites with PBE band gaps. Simultaneously, we employed decision tree models (XGBoost, LightGBM, CatBoost, and random forest) and convolutional neural network (CNN) models (CustomCNN, VGG16, DenseNet121, Xception, and EfficientNetV2B0) to predict band gaps, achieving a coefficient of determination (R2) of up to 0.93. Furthermore, we selected 54 kesterite materials with PBE band gaps ranging from 0.4 to 1.5 eV for detailed electronic structure calculations with Heyd-Scuseria-Ernzerhof (HSE06) functional and investigated the effects of B-site atomic substitutions on the performance of solar cell materials. Compared to Ag2CaSnSe4, Ag2SrSnSe4 exhibits fewer deep defects and richer shallow defects, which contribute to an increased carrier concentration and reduced charge and energy losses, making it a superior candidate for solar cell applications.
Collapse
Affiliation(s)
- Zhaosheng Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Qing Xiong
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Sijia Liu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
2
|
Yu F, Li SY, Yang HR, Shen J, Yin MX, Tian YR, Zhang YT, Kong XW, Lei XW. Crystal-Rigidifying Strategy in Hybrid Manganese Halide to Achieve Narrow Green Emission and High Structural Stability. Inorg Chem 2024; 63:14116-14125. [PMID: 39007761 DOI: 10.1021/acs.inorgchem.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although organic-inorganic hybrid Mn2+ halides have advanced significantly, achieving high stability and narrow-band emission remains enormously challenging owing to the weak ionic nature and soft crystal lattice of the halide structure. To address these issues, we proposed a cationic engineering strategy of long-range cation π···π stacking and C-H···π interactions to simultaneously improve the crystal structural stability and rigidity. Herein, two organic zero-dimensional (0D) manganese halide hybrids of (BACQ)2MnX4 [BACQ = 4-(butylamino)-7-chloroquinolin-1-ium; X = Cl and Br] were synthesized. (BACQ)2MnX4 display strong green-light emissions with the narrowest full width at half-maximum (fwhm) of 39 nm, which is significantly smaller than those of commercial green phosphor β-SiAlON:Eu2+ and most of reported manganese halides. Detailed Hirshfeld surface analyses demonstrate the rigid environment around the [MnX4]2- units originating from the interactions between [BACQ]+. The rigid crystal structure weakens the electron-phonon coupling and renders narrow fwhm of these manganese halides, which is further confirmed by temperature-dependent emission spectra. Remarkably, (BACQ)2MnX4 realizes outstanding structural and luminescence stabilities in various extreme environments. Benefiting from the excellent performance, these Mn2+ halides are used to assemble light-emitting diodes with a wide color gamut of 105% of the National Television System Committee 1931 standard, showcasing the advanced applications in liquid-crystal-display backlighting.
Collapse
Affiliation(s)
- Fang Yu
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Shu-Yao Li
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Hai-Rong Yang
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Jie Shen
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Ming-Xia Yin
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yan-Rui Tian
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Ya-Tong Zhang
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiang-Wen Kong
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineer and Materials, Institute of Optoelectronic Functional Materials, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
3
|
Yin J, Song X, Sun C, Jiang Y, He Y, Fei H. Modulating Inorganic Dimensionality of Ultrastable Lead Halide Coordination Polymers for Photocatalytic CO 2 Reduction to Ethanol. Angew Chem Int Ed Engl 2024; 63:e202316080. [PMID: 38385586 DOI: 10.1002/anie.202316080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Lead halide hybrids have shown great potentials in CO2 photoreduction, but challenging to afford C2+ reduced products, especially using H2O as the reductant. This is largely due to the trade-off problem between instability of the benchmark 3D structures and low carrier mobility of quasi-2D analogues. Herein, the lead halide dimensionality of robust coordination polymers (CP) was modulated by organic ligands differing in a single-atom change (NH vs. CH2), in which the NH groups coordinate with interlamellar [PbI2] clusters to achieve the important 2D→3D transition. This first CP based on 3D cationic lead iodide sublattice possesses both high aqueous stability and a low exciton binding energy of 25 meV that is on the level of ambient thermal energy, achieving artificial photosynthesis of C2H5OH. Photophysical studies combined with theoretical calculations suggest the bridging [PbI2] clusters in the 3D structure not only results in enhanced carrier transport, but also promotes the intrinsic charge polarization to facilitate the C-C coupling. With trace loading of Rh cocatalyst, the apparent quantum efficiency of the 3D CP reaches 1.4 % at 400 nm with a high C2H5OH selectivity of 89.4 % (product basis), which presents one of the best photocatalysts for C2 products to date.
Collapse
Affiliation(s)
- Jinlin Yin
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 >Siping Rd., Shanghai, 200092, China
| | - Xueling Song
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 >Siping Rd., Shanghai, 200092, China
| | - Chen Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 >Siping Rd., Shanghai, 200092, China
| | - Yilin Jiang
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 >Siping Rd., Shanghai, 200092, China
| | - Yani He
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 >Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 >Siping Rd., Shanghai, 200092, China
| |
Collapse
|
4
|
Chen H, Li Z, Wang S, Peng G, Lan W, Wang H, Jin Z. Molecular Design of Layered Hybrid Silver Bismuth Bromine Single Crystal for Ultra-Stable X-Ray Detection With Record Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308872. [PMID: 38013622 DOI: 10.1002/adma.202308872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Nowadays, weak interlayer coupling and unclear mechanism in layered hybrid silver bismuth bromine (LH-AgBiBr) are the main reasons for limiting its further enhanced X-ray detection sensitivity and stability. Herein, the design rules for LH-AgBiBr and its influence on X-ray detection performance are reported for the first time. Although shortening amine size can enhance interlayer coupling, its detection performance is severely hampered by its easier defect formation caused by enlarged micro strain. In contrast, an appropriate divalent amine design endows the material with improved interlayer coupling and released micro strain, which benefits crystal stability and mechanical hardness. Another contribution is to increase material density and dielectric constant; thus, enhancing X-ray absorption and carrier transport. Consequently, the optimized parallel device based on BDA2 AgBiBr8 achieves a record sensitivity of 2638 µC Gyair -1 cm-2 and an ultra-low detection limit of 7.4 nGyair s-1 , outperforming other reported LH-AgBiBr X-ray detectors. Moreover, the unencapsulated device displays remarkable anti-moisture, anti-thermal (>150 °C), and anti-radiation (>1000 Gyair ) endurance. Eventually, high-resolution hard X-ray imaging is demonstrated by linear detector arrays under a benign dose rate (1.63 µGyair s-1 ) and low external bias (5 V). Hence, these findings provide guidelines for future materials design and device optimization.
Collapse
Affiliation(s)
- Huanyu Chen
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Shuo Wang
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Lai Y, Zhou Y, Liu H, Guo T, Zou A, Wang L, Chen Y, Zhao X, Zheng K, Tong X, Wang R. Fast and Reversible Quasi-Solid-State Anion Exchange in Highly Luminescent CsPbX 3 Perovskite Nanocrystals for Dual-Mode Encryption-Decryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304377. [PMID: 37649212 DOI: 10.1002/smll.202304377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Solid-state anion exchange method is easy to handle and beneficial to improve stability of CsPbX3 (X = Cl, Br, I) perovskites nanocrystals (NCs) with respect to anion exchange in liquid phase. However, the corresponding exchange rate is rather slow due to the limited diffusion rate of anions from solid phases, resulting in mixed-halide perovskite NCs. Herein, a fast and reversible post-synthetic quasi-solid-state anion exchange method in CsPbX3 NCs with inorganic potassium halide KX salts/polyvinylpyrrolidone (PVP) thin film is firstly reported. Original morphology of the exchanged NCs is well-preserved for all samples. Complete anion exchange from Br- to Cl- or I- is successfully achieved in CsPbX3 NCs within ≈20 min through possible vacancies-assisted ion exchange mechanism, under ambient conditions and vice versa. Particularly, Br- -exchanged CsPbCl3 and CsPbI3 NCs exhibit improved optical properties. Encouraged by the attractive fluorescence and persistent luminescence as well as good stability of the resulted CsPbX3 NCs, an effective dual-mode information storage-reading application is demonstrated. It is believed that this method can open a new avenue for the synthesis of other direct-synthesis challenging quantum-confined perovskite NCs/nanoplates/nanodisks or CsSnX3 NCs/thin film and provide an opportunity for advanced information storage compatible for practical applications.
Collapse
Affiliation(s)
- Yueling Lai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongjiang Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tongyin Guo
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lianju Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiqing Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xianglong Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kanghui Zheng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, P. R. China
| |
Collapse
|
6
|
Jang C, Kim K, Nho HW, Lee SM, Mubarok H, Han JH, Kim H, Lee D, Jang Y, Lee MH, Kwon OH, Kwak SK, Im WB, Song MH, Park J. Synthesis of Thermally Stable and Highly Luminescent Cs 5 Cu 3 Cl 6 I 2 Nanocrystals with Nonlinear Optical Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206668. [PMID: 36703517 DOI: 10.1002/smll.202206668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Low-dimensional Cu(I)-based metal halide materials are gaining attention due to their low toxicity, high stability and unique luminescence mechanism, which is mediated by self-trapped excitons (STEs). Among them, Cs5 Cu3 Cl6 I2 , which emits blue light, is a promising candidate for applications as a next-generation blue-emitting material. In this article, an optimized colloidal process to synthesize uniform Cs5 Cu3 Cl6 I2 nanocrystals (NCs) with a superior quantum yield (QY) is proposed. In addition, precise control of the synthesis parameters, enabling anisotropic growth and emission wavelength shifting is demonstrated. The synthesized Cs5 Cu3 Cl6 I2 NCs have an excellent photoluminescence (PL) retention rate, even at high temperature, and exhibit high stability over multiple heating-cooling cycles under ambient conditions. Moreover, under 850-nm femtosecond laser irradiation, the NCs exhibit three-photon absorption (3PA)-induced PL, highlighting the possibility of utilizing their nonlinear optical properties. Such thermally stable and highly luminescent Cs5 Cu3 Cl6 I2 NCs with nonlinear optical properties overcome the limitations of conventional blue-emitting nanomaterials. These findings provide insights into the mechanism of the colloidal synthesis of Cs5 Cu3 Cl6 I2 NCs and a foundation for further research.
Collapse
Affiliation(s)
- Changhee Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kangyong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Seung Min Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hanif Mubarok
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Joo Hyeong Han
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyeonjung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dongryeol Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yangpil Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Hyung Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jongnam Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Mustafa GM, Slam A, Saba S, Noor N, Waqas Iqbal M, Dahshan A. Optoelectronic and thermoelectric characteristics of halide based double perovskites K2YAgX6 (X = Br, I) for energy storage applications. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Serovaiskii A, Kutcherov VG, Vinokurov VA, Serebryakov SG, Trotsenko VG, Zhukova ES, Bush AA, Shanenko AA, Vasenko AS, Stolyarov VS, Kozlov VI. Synthesis of Perovskite-Type BiScO 3 Ceramics and their Dielectric and Infrared Characterization. J Phys Chem Lett 2022; 13:10114-10119. [PMID: 36269349 DOI: 10.1021/acs.jpclett.2c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BiScO3 compound was obtained in the form of dense ceramic with a perovskite-type structure, and its complex characterization was determined for the first time. The corresponding synthesis procedure is described in detail. It is demonstrated that the temperature region of the phase stability at atmospheric pressure lies at T < 700 °C (973 K). It is shown that the crystal structure of the BiScO3 ceramic is centrosymmetric. Dielectric measurements of the synthesized sample performed at frequencies 25 Hz to 1 MHz and at temperatures 10-340 K show no changes typical for phase transition. Room-temperature infrared (30-15600 cm-1) and Raman (90-2000 cm-1) spectra of the prepared BiScO3 ceramic are measured, and information on the parameters of phonon resonances is obtained. The number of infrared modes exceeds that predicted by the factor group analysis of the noncentrosymmetric space group C2. The reason for selection rules violation can be associated with the disorder of the crystal structure and local distortions induced by the lone pair of electrons of Bi3+.
Collapse
Affiliation(s)
- Alexandr Serovaiskii
- Gubkin Russian State University of Oil and Gas (National Research University), Leninsky avenue 65/1, Moscow119991, Russia
| | - Vladimir G Kutcherov
- Gubkin Russian State University of Oil and Gas (National Research University), Leninsky avenue 65/1, Moscow119991, Russia
- KTH Royal Institute of Technology, Lindstedtsvägen 30, Stockholm11428, Sweden
| | - Vladimir A Vinokurov
- Gubkin Russian State University of Oil and Gas (National Research University), Leninsky avenue 65/1, Moscow119991, Russia
| | - Sergei G Serebryakov
- Gubkin Russian State University of Oil and Gas (National Research University), Leninsky avenue 65/1, Moscow119991, Russia
| | - Vasily G Trotsenko
- Laboratory of Terahertz Spectroscopy, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny141700, Russia
- UFR Sciences, Université Paris-Saclay, 15 rue Georges Clemenceau, Orsay cedex91405, France
| | - Elena S Zhukova
- Laboratory of Terahertz Spectroscopy, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny141700, Russia
| | - Alexander A Bush
- Research Institute of Solid-State Electronics Materials, MIREA - Russian Technological University (RTU MIREA), 78 Vernadsky prospect, Moscow119454, Russia
| | | | | | - Vasily S Stolyarov
- Center for Advanced Mesoscience and Nanotechnology, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny141700, Russia
| | - Vladislav I Kozlov
- Research Institute of Solid-State Electronics Materials, MIREA - Russian Technological University (RTU MIREA), 78 Vernadsky prospect, Moscow119454, Russia
- Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow117339, Russia
| |
Collapse
|
9
|
Lu H, Long R. Photoinduced Small Hole Polarons Formation and Recombination in All-Inorganic Perovskite from Quantum Dynamics Simulation. J Phys Chem Lett 2022; 13:7532-7540. [PMID: 35947434 DOI: 10.1021/acs.jpclett.2c02211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We conducted ab initio molecular dynamics (AIMD) and nonadiabatic MD to simulate polaron formation and recombination in all-inorganic Cs3Bi2Br9 perovskite. The meticulously designed AIMD simulations show that two types of small hole polaron, including localized and semidelocalized small hole polaron on either an intralayer or an interlayer Br dimer, are adiabatically formed within 1.71 ps. The localized small hole polaron reduces nonadiabatic coupling and decoherence time and, thus, delays charge recombination to 213 ns. In contrast, the dominant semidelocalized polaron increases nonadiabatic coupling by enhancing electron-hole overlap and restores the energy gap and decoherence time to the pristine system, accelerating recombination to 4.7 ns compared to a 10 ns charge carrier lifetime in the pristine system. All the obtained time scales agree well with experiments. The study offers a fundamental understanding of the excited-state dynamics of small hole polaron in Cs3Bi2Br9 and helps to design high-performance perovskite optoelectronics and photovoltaics.
Collapse
Affiliation(s)
- Haoran Lu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
10
|
Wang X, Yang J, Wang X, Faizan M, Zou H, Zhou K, Xing B, Fu Y, Zhang L. Entropy-Driven Stabilization of Multielement Halide Double-Perovskite Alloys. J Phys Chem Lett 2022; 13:5017-5024. [PMID: 35649269 DOI: 10.1021/acs.jpclett.2c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, a major obstacle restricting the commercial application of halide perovskites is their low thermodynamic stability. Herein, inspired by the high-stability high-entropy alloys, we theoretically investigated a variety of multielement double-perovskite alloys. First-principles calculations show that the entropy contribution to Gibbs free energy, which offsets the positive enthalpy contribution by up to 35 meV/f.u., can significantly enhance the material stability of double-perovskite alloys. We found that the electronic properties of bandgaps (1.04-2.21 eV) and carrier effective masses (0.34 to greater than 2 m0) of the multielement double-perovskite alloys can be tuned over a wide range. Meanwhile, the parity-forbidden condition of optical transitions in the Cs2AgInCl6 perovskite can be broken because of the lower symmetry of the configurational disorder, leading to enhanced transition intensity. This work demonstrates a promising strategy by utilizing the alloy entropic effect to further improve the material stability and optoelectronic performance of halide perovskites.
Collapse
Affiliation(s)
- Xinjiang Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Jingxiu Yang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Xueting Wang
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, and School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China
| | - Muhammad Faizan
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Hongshuai Zou
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Kun Zhou
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Bangyu Xing
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, Jilin University, Changchun 130012, China
| | - Lijun Zhang
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Wang B, Chu W, Prezhdo OV. Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Inverse Fast Fourier Transform. J Phys Chem Lett 2022; 13:331-338. [PMID: 34978830 DOI: 10.1021/acs.jpclett.1c03884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonadiabatic (NA) molecular dynamics (MD) allows one to investigate far-from-equilibrium processes in nanoscale and molecular materials at the atomistic level and in the time domain, mimicking time-resolved spectroscopic experiments. Ab initio NAMD is limited to about 100 atoms and a few picoseconds, due to computational cost of excitation energies and NA couplings. We develop a straightforward methodology that can extend ab initio quality NAMD to nanoseconds and thousands of atoms. The ab initio NAMD Hamiltonian is sampled and interpolated along a trajectory using a Fourier transform, and then, it is used to perform NAMD with known algorithms. The methodology relies on the classical path approximation, which holds for many materials and processes. To achieve a complete ab initio quality description, the trajectory can be obtained using an ab initio trained machine learning force field. The method is demonstrated with charge carrier trapping and relaxation in hybrid organic-inorganic and all-inorganic metal halide perovskites that exhibit complex dynamics and are actively studied for optoelectronic applications.
Collapse
Affiliation(s)
- Bipeng Wang
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|