1
|
Johannsen S, Robles R, Weismann A, Ridier K, Berndt R, Gruber M. Spin-State Switching of Spin-Crossover Complexes on Cu(111) Evidenced by Spin-Flip Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202411865. [PMID: 39185688 PMCID: PMC11627136 DOI: 10.1002/anie.202411865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Spin-crossover compounds can be switched between two stable states with different magnetic moments, conformations, electronic, and optical properties, which opens appealing perspectives for technological applications including miniaturization down to the scale of single molecules. Although control of the spin states is crucial their direct identification is challenging in single-molecule experiments. Here we investigate the spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3)2] on a Cu(111) surface with scanning tunneling microscopy and density functional theory calculations. Spin crossover of single molecules in dense islands is achieved via electron injection. Spin-flip excitations are resolved in scanning tunneling spectra in a magnetic field enabling the direct identification of the molecular spin state, and revealing the existence of magnetic anisotropy in the HS molecules.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)20018Donostia-San SebastiánSpain
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Karl Ridier
- LCC, CNRS and Université de Toulouse, UPS, INP31077ToulouseFrance
| | - Richard Berndt
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Manuel Gruber
- Faculty of Physics and CENIDEUniversity of Duisburg-Essen47057DuisburgGermany
| |
Collapse
|
2
|
Ide N, Banerjee A, Weismann A, Berndt R. Spin-state switching of indium-phthalocyanine on Pb(100). RSC Adv 2024; 14:38506-38513. [PMID: 39640523 PMCID: PMC11618534 DOI: 10.1039/d4ra07270g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Indium(iii) phthalocyanine chloride deposited on Pb(100) is studied by scanning tunnelling spectroscopy at cryogenic temperatures. The Cl ions are dissociated and the remaining indium phthalocyanine (InPc) is observed in two states with the metal ion pointing to (↓) or away (↑) from the substrate. Isolated molecules and islands with a superstructure and a unit cell of four inequivalent molecules, namely one InPc↑ and three InPc↓ in different sites, are observed. Using atomic resolution images of the substrate the adsorption sites and azimuthal orientation of InPc are determined and a structure model is proposed. Conductance spectra of the lowest unoccupied molecular orbital reveal differences that depend on the adsorption sites and azimuthal orientations of the complexes. Only InPc↑ molecules exhibit Shiba states, indicating the presence of a localized spin. By electron extraction isolated complexes as well as molecules in islands are converted from InPc↑ to InPc↓. At the same time, their spin state changes, as indicated by the disappearance of the Shiba states.
Collapse
Affiliation(s)
- Niklas Ide
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel D-24098 Kiel Germany
| | - Arnab Banerjee
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel D-24098 Kiel Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel D-24098 Kiel Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel D-24098 Kiel Germany
| |
Collapse
|
3
|
Treichel M, Möller J, Meng X, Gutzeit F, Herges R, Berndt R, Weismann A. Tilted Spins in Chains of Molecular Switches on Pb(100). ACS NANO 2024. [PMID: 39276102 PMCID: PMC11440647 DOI: 10.1021/acsnano.4c07477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
A complex based on a Ni(II) porphyrin exhibiting spin crossover on Ag(111) is studied on Pb(100) by scanning tunneling microscopy at 0.3 K. Strong molecular interactions between the phenyl and pentafluorophenyl moieties lead to the formation of molecular chains and cause a faceting of the substrate surface. The chains are located along double and multiple substrate steps that deviate from high-symmetry directions. Tunneling spectroscopy reveals spin-flip excitations of an S = 1 system. Measurements in high magnetic fields are used to identify a tilt of the complex and its hard anisotropy axis with respect to the surface normal. Electron injection into the substrate near the molecular rows induces a transition to a state with larger inelastic cross section, leaving the spin state unchanged.
Collapse
Affiliation(s)
- Marten Treichel
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Jenny Möller
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Xiangzhi Meng
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Florian Gutzeit
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
4
|
Zhang Y, Giménez-Santamarina S, Cardona-Serra S, Gao F, Coronado E, Brandbyge M. Strong Electron-Vibration Signals in Weakly Coupled Molecular Junctions: Activation of Spin-Crossover. NANO LETTERS 2024; 24:9846-9853. [PMID: 39092593 DOI: 10.1021/acs.nanolett.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Manipulating individual molecular spin states with electronic current has the potential to revolutionize quantum information devices. However, it is still unclear how a current can cause a spin transition in single-molecule devices. Here, we propose a spin-crossover (SCO) mechanism induced by electron-phonon coupling in an iron(II) phthalocyanine molecule situated on a graphene-decoupled Ir(111) substrate. We performed simulations of both elastic and inelastic electron tunneling spectroscopy (IETS), which reveal current-induced Fe-N vibrations and an underestimation of established electron-vibration signals. Going beyond standard perturbation theory, we examined molecules in various charge and spin states using the Franck-Condon framework. The increased probability of spin switching suggests that notable IETS signals indicate SCO triggered by the inelastic vibrational excitation associated with Fe-N stretching.
Collapse
Affiliation(s)
- Yachao Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | | - Fei Gao
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Spain
| | - Mads Brandbyge
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Trapali A, Muppal M, Pandey S, Boillot ML, Repain V, Dappe YJ, Dayen JF, Rivière E, Guillot R, Arrio MA, Otero E, Bellec A, Mallah T. Investigation of the spin crossover behaviour of a sublimable Fe(II)-qsal complex: from the bulk to a submonolayer on graphene/SiO 2. Dalton Trans 2024; 53:12519-12526. [PMID: 39012501 DOI: 10.1039/d4dt01417k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We synthesized a sublimable molecular spin crossover Fe(II) complex based on the Schiff base tridentate ligand qsal-NEt2 (5-diethylamino-2-((quinolin-8-ylimino)methyl)phenol). The compound undergoes a transition in temperature with thermally induced excited spin state-trapping (TIESST) for high-temperature sweep rates, which can be suppressed by reducing the sweep rate. The X-ray absorption spectroscopy (XAS) studies on the microcrystalline powder confirm the TIESST effect. The molecules are deposited under ultra-high vacuum on a graphene/SiO2 substrate as a submonolayer. Investigation of the submonolayer by XAS reveals the molecular integrity and shows a spin crossover for the whole temperature range from 350 to 4 K, with residual HS species at low temperature and no TIESST effect. DFT calculations suggest a distribution of energetically similar adsorption configurations on graphene, i.e., with smooth crossover behaviour and the absence of TIESST, consistent with very weak intermolecular interactions and the absence of large molecular islands within the submonolayer.
Collapse
Affiliation(s)
- Adelais Trapali
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay 12 Cedex, France.
| | - Mukil Muppal
- Université Paris Cit é, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013, Paris, France
| | - Satakshi Pandey
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg, 67034, France
| | - Marie-Laure Boillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay 12 Cedex, France.
| | - Vincent Repain
- Université Paris Cit é, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013, Paris, France
| | - Yannick J Dappe
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, Cedex, France
| | - Jean-François Dayen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg, 67034, France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay 12 Cedex, France.
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay 12 Cedex, France.
| | - Marie-Anne Arrio
- Institutde Mineŕalogie, dePhysiquedes Mateŕiauxetde Cosmochimie, CNRS, Université Pierreet Marie Curie, UMR 7590, Paris, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Amandine Bellec
- Université Paris Cit é, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013, Paris, France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay 12 Cedex, France.
| |
Collapse
|
6
|
Johannsen S, Gruber M, Barreteau C, Seredyuk M, Antonio Real J, Markussen T, Berndt R. Spin-Crossover and Fragmentation of Fe(neoim) 2 on Silver and Gold. J Phys Chem Lett 2023; 14:7814-7823. [PMID: 37623823 DOI: 10.1021/acs.jpclett.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The neutral spin crossover complex Fe(neoim)2, neoim being the deprotonated form of the ionogenic ligand 2-(1H-imidazol-2-yl)-9-methyl-1,10-phenanthroline (neoimH), is investigated on the (111) surfaces of Au and Ag using scanning tunneling microscopy and density functional theory calculations. The complex sublimates and adsorbs intact on Ag(111), where it exhibits an electron-induced spin crossover. However, it fragments on Au. According to density functional theory calculations, the adsorbed complex is drastically distorted by the interactions with the substrates, in particular by van der Waals forces. Dispersion interaction is also decisive for the relative stabilities of the low- and high-spin states of the adsorbed complex. The unexpected instability of the complex on the gold substrate is attributed to enhanced covalent bonding of the fragments to the substrate.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Manuel Gruber
- Faculty of Physics and CENIDE, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Cyrille Barreteau
- Université Paris-Saclay CEA, CNRS SPEC, 91191 Gif-sur-Yvette, France
| | - Maksym Seredyuk
- Instituto de Ciencia Molecular (ICMol)/Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street 01601 Kyiv, Ukraine
| | - José Antonio Real
- Instituto de Ciencia Molecular (ICMol)/Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain
| | | | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
7
|
Chen H, Yang HH, Frauhammer T, You H, Sun Q, Nagel P, Schuppler S, Gaspar AB, Real JA, Wulfhekel W. Observation of Exchange Interaction in Iron(II) Spin Crossover Molecules in Contact with Passivated Ferromagnetic Surface of Co/Au(111). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300251. [PMID: 36828799 DOI: 10.1002/smll.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 06/02/2023]
Abstract
Spin crossover (SCO) complexes sensitively react on changes of the environment by a change in the spin of the central metallic ion making them ideal candidates for molecular spintronics. In particular, the composite of SCO complexes and ferromagnetic (FM) surfaces would allow spin-state switching of the molecules in combination with the magnetic exchange interaction to the magnetic substrate. Unfortunately, when depositing SCO complexes on ferromagnetic surfaces, spin-state switching is blocked by the relatively strong interaction between the adsorbed molecules and the surface. Here, the Fe(II) SCO complex [FeII (Pyrz)2 ] (Pyrz = 3,5-dimethylpyrazolylborate) with sub-monolayer thickness in contact with a passivated FM film of Co on Au(111) is studied. In this case, the molecules preserve thermal spin crossover and at the same time the high-spin species show a sizable exchange interaction of > 0.9 T with the FM Co substrate. These observations provide a feasible design strategy in fabricating SCO-FM hybrid devices.
Collapse
Affiliation(s)
- Hongyan Chen
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Hung-Hsiang Yang
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Timo Frauhammer
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Haoran You
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Qing Sun
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Peter Nagel
- Electron Spectroscopy Group, Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Schuppler
- Electron Spectroscopy Group, Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Ana Belén Gaspar
- Institut de Ciència Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán Martínez 2, 46980, Paterna, Valencia, Spain
| | - José Antonio Real
- Institut de Ciència Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán Martínez 2, 46980, Paterna, Valencia, Spain
| | - Wulf Wulfhekel
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Quantum Control Group, Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| |
Collapse
|
8
|
Yazdani S, Phillips J, Ekanayaka TK, Cheng R, Dowben PA. The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials. Molecules 2023; 28:3735. [PMID: 37175145 PMCID: PMC10180229 DOI: 10.3390/molecules28093735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule-substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.
Collapse
Affiliation(s)
- Saeed Yazdani
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Jared Phillips
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Thilini K. Ekanayaka
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| | - Ruihua Cheng
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Peter A. Dowben
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| |
Collapse
|
9
|
Kelai M, Tauzin A, Railean A, Repain V, Lagoute J, Girard Y, Rousset S, Otero E, Mallah T, Boillot ML, Enachescu C, Bellec A. Interface versus Bulk Light-Induced Switching in Spin-Crossover Molecular Ultrathin Films Adsorbed on a Metallic Surface. J Phys Chem Lett 2023; 14:1949-1954. [PMID: 36787373 DOI: 10.1021/acs.jpclett.2c03733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spin-crossover molecules present the unique property of having two spin states that can be controlled by light excitation at low temperature. Here, we report on the photoexcitation of [FeII((3, 5-(CH3)2Pz)3BH)2] (Pz = pyrazolyl) ultrathin films, with thicknesses ranging from 0.9 to 5.3 monolayers, adsorbed on Cu(111) substrate. Using X-ray absorption spectroscopy measurements, we confirm the anomalous light-induced spin-state switching observed for sub-monolayer coverage and demonstrate that it is confined to the first molecular layer in contact with the metallic substrate. For higher coverages, the well-known light-induced excited spin-state trapping effect is recovered. Combining continuous light excitation with thermal cycling, we demonstrate that at low temperature light-induced thermal hysteresis is measured for the thicker films, while for sub-monolayer coverage, the light enables extension of the thermal conversion over a large temperature range. Mechanoelastic simulations underline that, due to the intermolecular interactions, opposite behaviors are observed in the different layers composing the films.
Collapse
Affiliation(s)
- Massine Kelai
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013 Paris, France
| | - Arthur Tauzin
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, UMR 8182, 91400 Orsay, France
| | - Anastasia Railean
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi 700506, Romania
| | - Vincent Repain
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013 Paris, France
| | - Jérôme Lagoute
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013 Paris, France
| | - Yann Girard
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013 Paris, France
| | - Sylvie Rousset
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013 Paris, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Talal Mallah
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, UMR 8182, 91400 Orsay, France
| | - Marie-Laure Boillot
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, UMR 8182, 91400 Orsay, France
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi 700506, Romania
| | - Amandine Bellec
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, F-75013 Paris, France
| |
Collapse
|
10
|
Montenegro-Pohlhammer N, Kuppusamy SK, Cárdenas-Jirón G, Calzado CJ, Ruben M. Computational demonstration of isomer- and spin-state-dependent charge transport in molecular junctions composed of charge-neutral iron(II) spin-crossover complexes. Dalton Trans 2023; 52:1229-1240. [PMID: 36606462 DOI: 10.1039/d2dt02598a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemistry offers a multitude of opportunities towards harnessing functional molecular materials with application propensity. One emerging area of interest is molecular spintronics, in which charge and spin degrees of freedom have been used to achieve power-efficient device architectures. Herein, we show that, with the aid of state-of-the-art quantum chemical calculations on designer molecular junctions, the conductance and spin filtering capabilities are molecular structure-dependent. As inferred from the calculations, structural control over the transport can be achieved by changing the position of the thiomethyl (SMe) anchoring groups for Au(111) electrodes in a set of isomeric 2,2'-bipyridine-based metal coordinating ligand entities L1 and L2. The computational studies on heteroleptic iron(II) coordination complexes (1 and 2) composed of L1 and L2 reveal that switching the spin-state of the iron(II) centers, from the low-spin (LS) to high-spin (HS) state, by means of an external electric field stimulus, could, in theory, be performed. Such switching, known as spin-crossover (SCO), renders charge transport through single-molecule junctions of 1 and 2 spin-state-dependent, and the HS junctions are more conductive than the LS junctions for both complexes. Additionally, the LS and HS junctions based on complex 1 are more conductive than those featuring complex 2. Moreover, it is predicted that the spin filtering efficiency (SFE) of the HS junctions strongly depends on the bridging complex geometry, with 1 showing a voltage-dependent SFE, whereas 2 exhibits an SFE of practically 100% over all the studied voltage range. To be pragmatic towards applications, the ligands L1 and L2 and complex 1 have been successfully synthesized, and the spin-state switching propensity of 1 in the bulk state has been elucidated. The results shown in this study might lead to the synthesis and characterization of isomeric SCO complexes with tuneable spin-state switching and charge transport properties.
Collapse
Affiliation(s)
- Nicolás Montenegro-Pohlhammer
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
- Departamento de Química Física. Universidad de Sevilla, c/Profesor García González, s/n., 41012 Sevilla, Spain
| | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
| | - Carmen J Calzado
- Departamento de Química Física. Universidad de Sevilla, c/Profesor García González, s/n., 41012 Sevilla, Spain
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Li D, Tong Y, Bairagi K, Kelai M, Dappe YJ, Lagoute J, Girard Y, Rousset S, Repain V, Barreteau C, Brandbyge M, Smogunov A, Bellec A. Negative Differential Resistance in Spin-Crossover Molecular Devices. J Phys Chem Lett 2022; 13:7514-7520. [PMID: 35944010 DOI: 10.1021/acs.jpclett.2c01934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate, based on low-temperature scanning tunneling microscopy (STM) and spectroscopy, a pronounced negative differential resistance (NDR) in spin-crossover (SCO) molecular devices, where a FeII SCO molecule is deposited on surfaces. The STM measurements reveal that the NDR is robust with respect to substrate materials, temperature, and the number of SCO layers. This indicates that the NDR is intrinsically related to the electronic structure of the SCO molecule. Experimental results are supported by density functional theory (DFT) with nonequilibrium Green's function (NEGF) calculations and a generic theoretical model. While the DFT+NEGF calculations reproduce NDR for a special atomically sharp STM tip, the effect is attributed to the energy-dependent tip density of states rather than the molecule itself. We, therefore, propose a Coulomb blockade model involving three molecular orbitals with very different spatial localization as suggested by the molecular electronic structure.
Collapse
Affiliation(s)
- Dongzhe Li
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- CEMES, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse, France
| | - Yongfeng Tong
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques UMR7162, 75013 Paris, France
| | - Kaushik Bairagi
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques UMR7162, 75013 Paris, France
| | - Massine Kelai
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques UMR7162, 75013 Paris, France
| | - Yannick J Dappe
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Jérôme Lagoute
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques UMR7162, 75013 Paris, France
| | - Yann Girard
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques UMR7162, 75013 Paris, France
| | - Sylvie Rousset
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques UMR7162, 75013 Paris, France
| | - Vincent Repain
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques UMR7162, 75013 Paris, France
| | - Cyrille Barreteau
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Mads Brandbyge
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - Amandine Bellec
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques UMR7162, 75013 Paris, France
| |
Collapse
|
12
|
Gavara-Edo M, Córdoba R, Valverde-Muñoz FJ, Herrero-Martín J, Real JA, Coronado E. Electrical Sensing of the Thermal and Light-Induced Spin Transition in Robust Contactless Spin-Crossover/Graphene Hybrid Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202551. [PMID: 35766419 DOI: 10.1002/adma.202202551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Hybrid devices based on spin-crossover (SCO)/2D heterostructures grant a highly sensitive platform to detect the spin transition in the molecular SCO component and tune the properties of the 2D material. However, the fragility of the SCO materials upon thermal treatment, light irradiation, or contact with surfaces and the methodologies used for their processing have limited their applicability. Here, an easily processable and robust SCO/2D hybrid device with outstanding performance based on the sublimable SCO [Fe(Pyrz)2 ] molecule deposited over chemical vapor deposition (CVD) graphene is reported, which is fully compatible with electronics industry protocols. Thus, a novel methodology based on growing an elusive polymorph of [Fe(Pyrz)2 ] (tetragonal phase) over graphene is developed that allows a fast and effective light-induced spin transition in the devices (≈50% yield in 5 min) to be detected electrically. Such performance can be enhanced even more when a flexible polymeric layer of poly(methyl methacrylate) is inserted in between the two active components in a contactless configuration, reaching a ≈100% yield in 5 min.
Collapse
Affiliation(s)
- Miguel Gavara-Edo
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Rosa Córdoba
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | | | | | - José Antonio Real
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Eugenio Coronado
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| |
Collapse
|
13
|
Nadeem M, Cruddas J, Ruzzi G, Powell BJ. Toward High-Temperature Light-Induced Spin-State Trapping in Spin-Crossover Materials: The Interplay of Collective and Molecular Effects. J Am Chem Soc 2022; 144:9138-9148. [PMID: 35546521 DOI: 10.1021/jacs.2c03202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spin-crossover (SCO) materials display many fascinating behaviors including collective phase transitions and spin-state switching controlled by external stimuli, e.g., light and electrical currents. As single-molecule switches, they have been fêted for numerous practical applications, but these remain largely unrealized-partly because of the difficulty of switching these materials at high temperatures. We introduce a semiempirical microscopic model of SCO materials combining crystal field theory with elastic intermolecular interactions. For realistic parameters, this model reproduces the key experimental results including thermally induced phase transitions, light-induced spin-state trapping (LIESST), and reverse-LIESST. Notably, we reproduce and explain the experimentally observed relationship between the critical temperature of the thermal transition, T1/2, and the highest temperature for which the trapped state is stable, TLIESST, and explain why increasing the stiffness of the coordination sphere increases TLIESST. We propose strategies to design SCO materials with higher TLIESST: optimizing the spin-orbit coupling via heavier atoms (particularly in the inner coordination sphere) and minimizing the enthalpy difference between the high-spin (HS) and low-spin (LS) states. However, the most dramatic increases arise from increasing the cooperativity of the spin-state transition by increasing the rigidity of the crystal. Increased crystal rigidity can also stabilize the HS state to low temperatures on thermal cycling yet leave the LS state stable at high temperatures following, for example, reverse-LIESST. We show that such highly cooperative systems offer a realistic route to robust room-temperature switching, demonstrate this in silico, and discuss material design rationale to realize this.
Collapse
Affiliation(s)
- M Nadeem
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jace Cruddas
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Gian Ruzzi
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|