1
|
Kadam SA, Sandoval S, Bastl Z, Simkovičová K, Kvítek L, Jašík J, Olszówka JE, Valtera S, Vaidulych M, Morávková J, Sazama P, Kubička D, Travert A, van Bokhoven JA, Fortunelli A, Kleibert A, Kalbáč M, Vajda Š. Cyclohexane Oxidative Dehydrogenation on Graphene-Oxide-Supported Cobalt Ferrite Nanohybrids: Effect of Dynamic Nature of Active Sites on Reaction Selectivity. ACS Catal 2023; 13:13484-13505. [PMID: 37881789 PMCID: PMC10594591 DOI: 10.1021/acscatal.3c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Indexed: 10/27/2023]
Abstract
In this work, we investigated cyclohexane oxidative dehydrogenation (ODH) catalyzed by cobalt ferrite nanoparticles supported on reduced graphene oxide (RGO). We aim to identify the active sites that are specifically responsible for full and partial dehydrogenation using advanced spectroscopic techniques such as X-ray photoelectron emission microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) along with kinetic analysis. Spectroscopically, we propose that Fe3+/Td sites could exclusively produce benzene through full cyclohexane dehydrogenation, while kinetic analysis shows that oxygen-derived species (O*) are responsible for partial dehydrogenation to form cyclohexene in a single catalytic sojourn. We unravel the dynamic cooperativity between octahedral and tetrahedral sites and the unique role of the support in masking undesired active (Fe3+/Td) sites. This phenomenon was strategically used to control the abundance of these species on the catalyst surface by varying the particle size and the wt % content of the nanoparticles on the RGO support in order to control the reaction selectivity without compromising reaction rates which are otherwise extremely challenging due to the much favorable thermodynamics for complete dehydrogenation and complete combustion under oxidative conditions.
Collapse
Affiliation(s)
- Shashikant A. Kadam
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Stefania Sandoval
- Department
of Low Dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Zdeněk Bastl
- Department
of Low Dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Karolína Simkovičová
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
- Department
of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 12, 77900 Olomouc, Czech Republic
| | - Libor Kvítek
- Department
of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 12, 77900 Olomouc, Czech Republic
| | - Juraj Jašík
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Joanna Elżbieta Olszówka
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Stanislav Valtera
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
- Department
of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Mykhailo Vaidulych
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jaroslava Morávková
- Department
of Structure and Dynamics in Catalysis, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy
of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Petr Sazama
- Department
of Structure and Dynamics in Catalysis, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy
of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - David Kubička
- Department
of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech
Republic
| | - Arnaud Travert
- Normandie
Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France
| | | | | | - Armin Kleibert
- Swiss
Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Martin Kalbáč
- Department
of Low Dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Štefan Vajda
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|