1
|
Lamsabhi AM, Mó O, Guillemin JC, Yáñez M. Characterization of 1,1- and 1,2-ethenedithiol, elusive compounds of potential astrochemical interest. J Mol Model 2024; 30:347. [PMID: 39316165 DOI: 10.1007/s00894-024-06149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
CONTEXT 1,1- and 1,2-ethenedithiol are elusive systems that could potentially exist in interstellar space, similar to analogous diols. In this paper, we investigate the structure, stability, and bonding characteristics of these compounds as well as the ions produced by protonation, deprotonation, or simple ionization processes. 1,2-ethenedithiol has two isomers, Z and E, with the most stable conformer being syn-anti for the Z isomer and anti-anti for the E isomer. However, the energy gaps between the different conformers are never larger than 6 kJ·mol-1. For 1,1-ethenedithiol, the global minimum is the syn-anti conformer. The vertical and adiabatic ionization processes as well as the intrinsic basicities and acidities of these families of compounds were analyzed and compared with those of the corresponding diols previously reported in the literature. This comparison revealed not only the numerical differences in these thermodynamic properties but also distinct trends between the two families of compounds. METHODS State-of-the-art G4 ab initio calculations were employed to calculate the structures and total energies of the systems under investigation. The QTAIM, ELF, and NBO approaches were used to analyze the electron density of all the neutral and charged systems included in our study. Van der Waals contributions, when relevant, were analyzed by locating regions of low reduced density gradient(s) using the NCIPLOT approach.
Collapse
Affiliation(s)
- Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049, Madrid, Cantoblanco, Spain
| | - Otilia Mó
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049, Madrid, Cantoblanco, Spain
| | - Jean-Claude Guillemin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | - Manuel Yáñez
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049, Madrid, Cantoblanco, Spain.
| |
Collapse
|
2
|
Wang L, Jiang X, Trabelsi T, Wang G, Francisco JS, Zeng X, Zhou M. Spectroscopic Study of [Mg, H, N, C, O] Species: Implications for the Astrochemical Magnesium Chemistry. J Am Chem Soc 2024; 146:4162-4171. [PMID: 38306246 DOI: 10.1021/jacs.3c13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Magnesium is an abundant metal element in space, and magnesium chemistry has vital importance in the evolution of interstellar medium (ISM) and circumstellar regions, such as the asymptotic giant branch star IRC+10216 where a variety of Mg compounds bearing H, C, N, and O have been detected and proposed as the important components in the gas-phase molecular clouds and solid-state dust grains. Herein, we report the formation and infrared spectroscopic characterization of the Mg-bearing molecules HMg, [Mg, N, C], [Mg, H, N, C], [Mg, N, C, O], and [Mg, H, N, C, O] from the reactions of Mg/Mg+ and the prebiotic isocyanic acid (HNCO) in the solid neon matrix. Based on their thermal diffusion and photochemical behavior, a complex reactivity landscape involving association, decomposition, and isomerization reactions of these Mg-bearing molecules is developed, which can not only help understand the chemical processes of the magnesium (iso)cyanides in astrochemistry but also provide implications on the presence of magnesium (iso)cyanates in the ISM and the chemical model for the dust grain surface reactions. It also provides a new paradigm of the key intermediate nature of the cationic complexes in the formation of neutral interstellar species.
Collapse
Affiliation(s)
- Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Tarek Trabelsi
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Joseph S Francisco
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Puzzarini C, Alessandrini S. Interstellar Ices: A Factory of the Origin-of-Life Molecules. ACS CENTRAL SCIENCE 2024; 10:13-15. [PMID: 38292599 PMCID: PMC10823504 DOI: 10.1021/acscentsci.3c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Cristina Puzzarini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Silvia Alessandrini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| |
Collapse
|
4
|
Marks J, Wang J, Sun BJ, McAnally M, Turner AM, Chang AHH, Kaiser RI. Thermal Synthesis of Carbamic Acid and Its Dimer in Interstellar Ices: A Reservoir of Interstellar Amino Acids. ACS CENTRAL SCIENCE 2023; 9:2241-2250. [PMID: 38161363 PMCID: PMC10755733 DOI: 10.1021/acscentsci.3c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024]
Abstract
Reactions in interstellar ices are shown to be capable of producing key prebiotic molecules without energetic radiation that are necessary for the origins of life. When present in interstellar ices, carbamic acid (H2NCOOH) can serve as a condensed-phase source of the molecular building blocks for more complex proteinogenic amino acids. Here, Fourier transform infrared spectroscopy during heating of analogue interstellar ices composed of carbon dioxide and ammonia identifies the lower limit for thermal synthesis to be 62 ± 3 K for carbamic acid and 39 ± 4 K for its salt ammonium carbamate ([H2NCOO-][NH4+]). While solvation increases the rates of formation and decomposition of carbamic acid in ice, the absence of solvent effects after sublimation results in a significant barrier to dissociation and a stable gas-phase molecule. Photoionization reflectron time-of-flight mass spectrometry permits an unprecedented degree of sensitivity toward gaseous carbamic acid and demonstrates sublimation of carbamic acid from decomposition of ammonium carbamate and again at higher temperatures from carbamic acid dimers. Since the dimer is observed at temperatures up to 290 K, similar to the environment of a protoplanetary disk, this dimer is a promising reservoir of amino acids during the formation of stars and planets.
Collapse
Affiliation(s)
- Joshua
H. Marks
- W.
M. Keck Research Laboratory in Astrochemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
- Department
of Chemistry, University of Hawai’i
at Manoa, Honolulu, Hawaii 96822, United States
| | - Jia Wang
- W.
M. Keck Research Laboratory in Astrochemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
- Department
of Chemistry, University of Hawai’i
at Manoa, Honolulu, Hawaii 96822, United States
| | - Bing-Jian Sun
- Department
of Chemistry, National Dong Hwa University, Hualien 974, Taiwan
| | - Mason McAnally
- W.
M. Keck Research Laboratory in Astrochemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
- Department
of Chemistry, University of Hawai’i
at Manoa, Honolulu, Hawaii 96822, United States
| | - Andrew M. Turner
- W.
M. Keck Research Laboratory in Astrochemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
- Department
of Chemistry, University of Hawai’i
at Manoa, Honolulu, Hawaii 96822, United States
| | - Agnes H.-H. Chang
- Department
of Chemistry, National Dong Hwa University, Hualien 974, Taiwan
| | - Ralf I. Kaiser
- W.
M. Keck Research Laboratory in Astrochemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
- Department
of Chemistry, University of Hawai’i
at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
5
|
Marks JH, Wang J, Kleimeier NF, Turner AM, Eckhardt AK, Kaiser RI. Prebiotic Synthesis and Isomerization in Interstellar Analog Ice: Glycinal, Acetamide, and Their Enol Tautomers. Angew Chem Int Ed Engl 2023; 62:e202218645. [PMID: 36702757 DOI: 10.1002/anie.202218645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Glycinal (HCOCH2 NH2 ) and acetamide (CH3 CONH2 ) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical-radical reactions of vinoxy (⋅CH2 CHO) and acetyl (⋅C(O)CH3 ), and then undergo keto-enol tautomerization. Exploiting tunable photoionization reflectron time-of-flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non-equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space.
Collapse
Affiliation(s)
- Joshua H Marks
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jia Wang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - N Fabian Kleimeier
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Andrew M Turner
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - André K Eckhardt
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
Wang J, Marks JH, Turner AM, Nikolayev AA, Azyazov V, Mebel AM, Kaiser RI. Mechanistical study on the formation of hydroxyacetone (CH 3COCH 2OH), methyl acetate (CH 3COOCH 3), and 3-hydroxypropanal (HCOCH 2CH 2OH) along with their enol tautomers (prop-1-ene-1,2-diol (CH 3C(OH)CHOH), prop-2-ene-1,2-diol (CH 2C(OH)CH 2OH), 1-methoxyethen-1-ol (CH 3OC(OH)CH 2) and prop-1-ene-1,3-diol (HOCH 2CHCHOH)) in interstellar ice analogs. Phys Chem Chem Phys 2023; 25:936-953. [PMID: 36285574 DOI: 10.1039/d2cp03543j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We unravel, for the very first time, the formation pathways of hydroxyacetone (CH3COCH2OH), methyl acetate (CH3COOCH3), and 3-hydroxypropanal (HCOCH2CH2OH), as well as their enol tautomers within mixed ices of methanol (CH3OH) and acetaldehyde (CH3CHO) analogous to interstellar ices in the ISM exposed to ionizing radiation at ultralow temperatures of 5 K. Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) and isotopically labeled ices, the reaction products were selectively photoionized allowing for isomer discrimination during the temperature-programmed desorption phase. Based on the distinct mass-to-charge ratios and ionization energies of the identified species, we reveal the formation pathways of hydroxyacetone (CH3COCH2OH), methyl acetate (CH3COOCH3), and 3-hydroxypropanal (HCOCH2CH2OH) via radical-radical recombination reactions and of their enol tautomers (prop-1-ene-1,2-diol (CH3C(OH)CHOH), prop-2-ene-1,2-diol (CH2C(OH)CH2OH), 1-methoxyethen-1-ol (CH3OC(OH)CH2) and prop-1-ene-1,3-diol (HOCH2CHCHOH)) via keto-enol tautomerization. To the best of our knowledge, 1-methoxyethen-1-ol (CH3OC(OH)CH2) and prop-1-ene-1,3-diol (HOCH2CHCHOH) are experimentally identified for the first time. Our findings help to constrain the formation mechanism of hydroxyacetone and methyl acetate detected within star-forming regions and suggest that the hitherto astronomically unobserved isomer 3-hydroxypropanal and its enol tautomers represent promising candidates for future astronomical searches. These enol tautomers may contribute to the molecular synthesis of biologically relevant molecules in deep space due to their nucleophilic character and high reactivity.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Joshua H Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Andrew M Turner
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Anatoliy A Nikolayev
- Lebedev Physical Institute, Samara 443011, Russia.,Samara National Research University, Samara 443086, Russia
| | | | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Wang J, Marks JH, Tuli LB, Mebel AM, Azyazov VN, Kaiser RI. Formation of Thioformic Acid (HCOSH)─The Simplest Thioacid─in Interstellar Ice Analogues. J Phys Chem A 2022; 126:9699-9708. [PMID: 36534075 DOI: 10.1021/acs.jpca.2c06860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the observation of the first sulfur-containing molecule, carbon monosulfide (CS), in the interstellar medium (ISM) half a century ago, sulfur-bearing species have attracted great attention from the astrochemistry, astrobiology, and planetary geology communities. Nevertheless, it is still not clear in which forms most of the sulfur resides in molecular clouds, an unsolved problem referred to as "sulfur depletion". Reported herein is the formation of thioformic acid (HCOSH)─the simplest thioacid─in interstellar ice analogues containing carbon monoxide (CO) and hydrogen sulfide (H2S) at 5 K. Utilizing single photoionization reflectron time-of-flight mass spectrometry and isotopically labeled molecules, thioformic acid molecules were selectively photoionized in the temperature-programmed desorption phase. These studies unravel a key reaction pathway to thioformic acid, an organic molecule recently detected toward the giant molecular cloud G+0.693-0.027 and the hot core G31.41+0.31, thus shedding light on interstellar sulfur chemistry.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Lotefa B Tuli
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | | | - Ralf I Kaiser
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|