1
|
Wang Y, Wang R, Ge Y, Geng C, Xu S. Aluminum Carboxylate Modification Enabled Efficient and Stable Perovskite-Polystyrene Thin Films for Light-Emitting Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29132-29140. [PMID: 38783827 DOI: 10.1021/acsami.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lead halide perovskite nanocrystals (PNCs) have demonstrated great potential in emerging display technologies. However, the practical application of PNCs is hindered by the inherent instability of their ionic surface. Here, we proposed a surface modification approach to enhance the stability of CsPbBr3 PNCs by postsynthetic treatment with aluminum phenylbutyrate (Al(PA)3). Our study reveals that Al(PA)3 displaces ammonium ligands and binds tightly on surface halide, providing excellent air and moisture resistance while preserving a high quantum efficiency of 81.6%. The modified PNCs maintain a constant photoluminescence intensity under continuous UV light illumination for 500 h. Additionally, the Al(PA)3 ligand is compatible with styrene, enabling homogeneous dispersion of PNCs in polystyrene matrices to form bright and uniform PNC-PS thin films. We demonstrated the application of the composite films for display backlighting, which exhibits a wide color gamut of 125% NTSC. The result highlights the potential of AlPA-modified PNCs in light-emitting and other optoelectronic devices.
Collapse
Affiliation(s)
- Yingying Wang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Runchi Wang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yingchao Ge
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Chong Geng
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Shu Xu
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
2
|
Han J, Zhang Z, Liu D, Wang X. Combining tetraphenylethene (TPE) derivative cations with Eu 3+-β-diketone complex anions for tunable luminescence. Chem Commun (Camb) 2022; 59:90-93. [PMID: 36472145 DOI: 10.1039/d2cc03903f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetraphenylethene (TPE) derivative cations (TPE+) and Eu3+-β-diketone complex anions (Eu(ABM)4-) were combined to construct a novel dual energy transfer system (TPE+ to Eu3+ and ABM to Eu3+). Our system exhibits tunable luminescence in DMF/water mixtures under different fw conditions owing to the AIE and ACQ properties of TPE+ and ABM, respectively. Its luminescence can be also regulated by adding P-containing oxysalts or polyacrylic acids.
Collapse
Affiliation(s)
- Jicao Han
- Marine College, Shandong University, Weihai, Weihai 264209, P. R. China.
| | - Zhengyu Zhang
- Marine College, Shandong University, Weihai, Weihai 264209, P. R. China.
| | - Dongdong Liu
- Marine College, Shandong University, Weihai, Weihai 264209, P. R. China.
| | - Xi Wang
- Marine College, Shandong University, Weihai, Weihai 264209, P. R. China.
| |
Collapse
|
3
|
Khurana S, Hassan MS, Yadav P, Ghosh D, Sapra S. Impact of Bifunctional Ligands on Charge Transfer Kinetics in CsPbBr 3-CdSe/CdS/ZnS Nanohybrids. J Phys Chem Lett 2022; 13:2591-2599. [PMID: 35290065 DOI: 10.1021/acs.jpclett.2c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mixed dimensional nanohybrids (MDNHs) between zero-dimensional (0D) perovskites and two-dimensional (2D) II-VI semiconductors hold great potential for photonic device applications. An in-depth study to understand the shuttling of charge carriers is carried out utilizing bifunctional ligands such as 4-aminothiophenol (4-ATP), p-aminobenzoic acid, and 6-amino-2-naphthoic acid in the synthesis of MDNHs of CsPbBr3 nanocrystals (NCs) and CdSe/CdS/ZnS core/shell/shell (CSS) nanoplatelets (NPLs). These MDNHs form donor-bridge-acceptor systems, where the electronic interaction is greatly influenced by the nature of ligands. The smaller size and stronger binding affinity of 4-ATP to CSS NPLs lead to a faster rate of charge transfer as compared to other linkers. Electronic structure calculations under the framework of density functional theory (DFT) confirms that in 4-ATP capped CSS NPLs, stronger electronic overlap occurs between CSS NPLs and 4-ATP at the valence band maxima (VBM). Furthermore, Poisson distribution modeling proposes that in 4-ATP linked MDNHs, the number of CSS NPLs around CsPbBr3 NCs is highest.
Collapse
Affiliation(s)
- Swati Khurana
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Md Samim Hassan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyesh Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sameer Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Xie M, Tao CL, Zhang Z, Liu H, Wan S, Nie Y, Yang W, Wang X, Wu XJ, Tian Y. Nonblinking Colloidal Quantum Dots via Efficient Multiexciton Emission. J Phys Chem Lett 2022; 13:2371-2378. [PMID: 35254074 DOI: 10.1021/acs.jpclett.2c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonblinking colloidal quantum dots (QDs) are significant to their applications as single-photon sources or light-emitting materials. Herein, a simple heat-up method was developed to synthesize high-qualityWZ-CdSe/CdS core-shell colloidal QDs, which achieved a near-unity photoluminescence quantum yield (PLQY). It was found that the blinking behavior of such QDs was completely suppressed at high excitation intensities, and ultra-stable PL emission was observed. For this reason, a systematic investigation was conducted, revealing that the complete blinking suppression was attributed mainly to the efficient multiexciton emission at high excitation intensities. Such high-quality QDs with nonblinking behaviors and nearly ideal PL properties at high excitation intensities have massive potential applications in various robust conditions, including QD display screens, single-particle tracks, and single-photon sources.
Collapse
Affiliation(s)
- Mingcai Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Hanyu Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sushu Wan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Nie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|