1
|
Tayler MCD, Bodenstedt S. NMRduino: A modular, open-source, low-field magnetic resonance platform. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107665. [PMID: 38598992 DOI: 10.1016/j.jmr.2024.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The NMRduino is a compact, cost-effective, sub-MHz NMR spectrometer that utilizes readily available open-source hardware and software components. One of its aims is to simplify the processes of instrument setup and data acquisition control to make experimental NMR spectroscopy accessible to a broader audience. In this introductory paper, the key features and potential applications of NMRduino are described to highlight its versatility both for research and education.
Collapse
Affiliation(s)
- Michael C D Tayler
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.
| | - Sven Bodenstedt
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| |
Collapse
|
2
|
Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker SJ, Utz M, Herrero-Gómez A, Marco-Rius I, Tayler MCD, Aime S, Reineri F, Budker D, Blanchard JW. Enzymatic Reactions Observed with Zero- and Low-Field Nuclear Magnetic Resonance. Anal Chem 2023; 95:17997-18005. [PMID: 38047582 PMCID: PMC10720634 DOI: 10.1021/acs.analchem.3c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/11/2023] [Indexed: 12/05/2023]
Abstract
We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-13C]fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.
Collapse
Affiliation(s)
- James Eills
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
| | - Román Picazo-Frutos
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
| | - Oksana Bondar
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Eleonora Cavallari
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Carla Carrera
- Institute
of Biostructures and Bioimaging, National Research Council of Italy, Turin 10126, Italy
| | - Sylwia J. Barker
- School of
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Marcel Utz
- School of
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Alba Herrero-Gómez
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Irene Marco-Rius
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Michael C. D. Tayler
- The
Barcelona Institute of Science and Technology, ICFO—Institut de Ciéncies Fotóniques, Castelldefels, Barcelona 08860, Spain
| | - Silvio Aime
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Francesca Reineri
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Dmitry Budker
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - John W. Blanchard
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Quantum
Technology Center, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Chuchkova L, Bodenstedt S, Picazo-Frutos R, Eills J, Tretiak O, Hu Y, Barskiy DA, de Santis J, Tayler MCD, Budker D, Sheberstov KF. Magnetometer-Detected Nuclear Magnetic Resonance of Photochemically Hyperpolarized Molecules. J Phys Chem Lett 2023:6814-6822. [PMID: 37486855 DOI: 10.1021/acs.jpclett.3c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Photochemically induced dynamic nuclear polarization (photo-CIDNP) enables nuclear spin ordering by irradiating samples with light. Polarized spins are conventionally detected via high-field chemical-shift-resolved NMR (above 0.1 T). In this Letter, we demonstrate in situ low-field photo-CIDNP measurements using a magnetically shielded fast-field-cycling NMR setup detecting Larmor precession via atomic magnetometers. For solutions comprising mM concentrations of the photochemically polarized molecules, hyperpolarized 1H magnetization is detected by pulse-acquired NMR spectroscopy. The observed NMR line widths are about 5 times narrower than normally anticipated in high-field NMR and are systematically affected by light irradiation during the acquisition period, reflecting a reduction of the transverse relaxation time constant, T2*, on the order of 10%. Magnetometer-detected photo-CIDNP spectroscopy enables straightforward observation of spin-chemistry processes in the ambient field range from a few nT to tens of mT. Potential applications of this measuring modality are discussed.
Collapse
Affiliation(s)
- Liubov Chuchkova
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Sven Bodenstedt
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Román Picazo-Frutos
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - James Eills
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Oleg Tretiak
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Yinan Hu
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Danila A Barskiy
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Jacopo de Santis
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Michael C D Tayler
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Dmitry Budker
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- Department of Physics, University of California, Berkeley, California 94720-7300, United States
| | - Kirill F Sheberstov
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| |
Collapse
|
4
|
Stern Q, Sheberstov K. Simulation of NMR spectra at zero and ultralow fields from A to Z - a tribute to Prof. Konstantin L'vovich Ivanov. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:87-109. [PMID: 38650894 PMCID: PMC11034480 DOI: 10.5194/mr-4-87-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2024]
Abstract
Simulating NMR experiments may appear mysterious and even daunting for those who are new to the field. Yet, broken down into pieces, the process may turn out to be easier than expected. Quite the opposite, it is in fact a powerful and playful means to get insights into the spin dynamics of NMR experiments. In this tutorial paper, we show step by step how some NMR experiments can be simulated, assuming as little prior knowledge from the reader as possible. We focus on the case of NMR at zero and ultralow fields, an emerging modality of NMR in which the spin dynamics are dominated by spin-spin interactions rather than spin-field interactions, as is usually the case with conventional high-field NMR. We first show how to simulate spectra numerically. In a second step, we detail an approach to construct an eigenbasis for systems of spin-1 / 2 nuclei at zero field. We then use it to interpret the numerical simulations.
Collapse
Affiliation(s)
- Quentin Stern
- Univ Lyon, ENS Lyon, UCBL, CNRS, CRMN UMR 5082, 69100,
VILLEURBANNE, France
| | - Kirill Sheberstov
- Laboratoire des biomolécules (LBM), Département de chimie, École
normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris,
France
| |
Collapse
|
5
|
Mouloudakis K, Bodenstedt S, Azagra M, Mitchell MW, Marco-Rius I, Tayler MCD. Real-Time Polarimetry of Hyperpolarized 13C Nuclear Spins Using an Atomic Magnetometer. J Phys Chem Lett 2023; 14:1192-1197. [PMID: 36715634 DOI: 10.1021/acs.jpclett.2c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We introduce a method for nondestructive quantification of nuclear spin polarization, of relevance to hyperpolarized spin tracers widely used in magnetic resonance from spectroscopy to in vivo imaging. In a bias field of around 30 nT we use a high-sensitivity miniaturized 87Rb-vapor magnetometer to measure the field generated by the sample, as it is driven by a windowed dynamical decoupling pulse sequence that both maximizes the nuclear spin lifetime and modulates the polarization for easy detection. We demonstrate the procedure applied to a 0.08 M hyperpolarized [1-13C]-pyruvate solution produced by dissolution dynamic nuclear polarization, measuring polarization repeatedly during natural decay at Earth's field. Application to real-time and continuous quality monitoring of hyperpolarized substances is discussed.
Collapse
Affiliation(s)
- Kostas Mouloudakis
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Sven Bodenstedt
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Marc Azagra
- IBEC─Institute for Bioengineering of Catalonia, 08028Barcelona, Spain
| | - Morgan W Mitchell
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA─Institució Catalana de Recerca i Estudis Avançats, 08010Barcelona, Spain
| | - Irene Marco-Rius
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Michael C D Tayler
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| |
Collapse
|
6
|
Eriksson SL, Mammen MW, Eriksson CW, Lindale JR, Warren WS. Multiaxial fields improve SABRE efficiency by preserving hydride order. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107282. [PMID: 35970048 DOI: 10.1016/j.jmr.2022.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Signal Amplification By Reversible Exchange (SABRE) and the heteronuclear variant, X-SABRE, increase the sensitivity of magnetic resonance techniques using order derived from reversible binding of para-hydrogen. One current limitation of SABRE is suboptimal polarization transfer over the lifetime of the complex. Here, we demonstrate a multiaxial low-field pulse sequence which allows optimal polarization build-up during a low-field "evolution" pulse, followed by a high-field "mixing" pulse which permits proton decoupling along an orthogonal axis. This preserves the singlet character of the hydrides while allowing exchange to replenish the ligands on the iridium catalyst. This strategy leads to a 2.5-fold improvement over continuous field SABRE SHEATH experimentally which was confirmed with numerical simulation.
Collapse
Affiliation(s)
- Shannon L Eriksson
- Department of Chemistry, Duke University, Durham, NC 27708, United States; School of Medicine, Duke University, Durham, NC 27708, United States
| | - Mathew W Mammen
- Department of Physics, Duke University, NC 27708, United States
| | - Clark W Eriksson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Jacob R Lindale
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Warren S Warren
- Department of Physics, Chemistry, Biomedical Engineering, and Radiology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|