1
|
Liu M, Chen X. Human Umbilical Cord-Derived Mesenchymal Stem Cells-Exosomes-Delivered miR-375 Targets HDAC4 to Promote Autophagy and Suppress T Cell Apoptosis in Sepsis-Associated Acute Kidney Injury. Appl Biochem Biotechnol 2024; 196:7954-7973. [PMID: 38668845 DOI: 10.1007/s12010-024-04963-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
This study sought to elucidate the mechanism of human umbilical cord-derived mesenchymal stem cells (HUCMSCs)-exosomes (Exos) in sepsis-associated acute kidney injury (SAKI). Exos were isolated from HUCMSCs and co-cultured with CD4+ T cells exposed to lipopolysaccharide to detect the effects of HUCMSCs-Exos on CD4+ T cell apoptosis and autophagy. miR-375 expression in CD4+ T cells and HUCMSCs-Exos was examined. The relationship between miR-375 and HDAC4 was analyzed. A mouse model of SAKI was established and injected with HUCMSCs-Exos to verify the function of HUCMSCs-Exos in vivo. HUCMSCs-Exos inhibited lipopolysaccharide-induced apoptosis of CD4+ T cells and promoted autophagy. miR-375 expression was noted to be elevated in the HUCMSCs-Exos. Importantly, HUCMSCs-Exos could deliver miR-375 into CD4+ T cells where miR-375 targeted HDAC4 and negatively regulated its expression. By this mechanism, HUCMSCs-Exos decreased CD4+ T cell apoptosis and augmented autophagy. This finding was further confirmed in an in vivo SAKI model. Collectively, HUCMSCs-Exos can protect against SAKI via delivering miR-375 that promotes autophagy and arrests T cell apoptosis through HDAC4 downregulation. These findings suggest a promising therapeutic potential for HUCMSCs-Exos in the context of SAKI.
Collapse
Affiliation(s)
- Min Liu
- Department of Intensive Care, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China
| | - Xiyun Chen
- Department of Gynecology, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
2
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
3
|
Malinick AS, Stuart DD, Lambert AS, Cheng Q. Curved Membrane Mimics for Quantitative Probing of Protein-Membrane Interactions by Surface Plasmon Resonance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:84-94. [PMID: 38128131 DOI: 10.1021/acsami.3c12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A majority of biomimetic membranes used for current biophysical studies rely on planar structures such as supported lipid bilayer (SLB) and self-assembled monolayers (SAMs). While they have facilitated key information collection, the lack of curvature makes these models less effective for the investigation of curvature-dependent protein binding. Here, we report the development and characterization of curved membrane mimics on a solid substrate with tunable curvature and ease in incorporation of cellular membrane components for the study of protein-membrane interactions. The curved membranes were generated with an underlayer lipid membrane composed of DGS-Ni-NTA and POPC lipids on the substrate, followed by the attachment of histidine-tagged cholera toxin (his-CT) as a capture layer. Lipid vesicles containing different compositions of gangliosides, including GA1, GM1, GT1b, and GQ1b, were anchored to the capture layer, providing fixation of the curved membranes with intact structures. Characterization of the curved membrane was accomplished with surface plasmon resonance (SPR), fluorescence recovery after photobleaching (FRAP), and nano-tracking analysis (NTA). Further optimization of the interface was achieved through principal component analysis (PCA) to understand the effect of ganglioside type, percentage, and vesicle dimensions on their interactions with proteins. In addition, Monte Carlo simulations were employed to predict the distribution of the gangliosides and interaction patterns with single point and multipoint binding models. This work provides a reliable approach to generate robust, component-tuning, and curved membranes for investigating protein interactions more pertinently than what a traditional planar membrane offers.
Collapse
Affiliation(s)
- Alexander S Malinick
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Daniel D Stuart
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Alexander S Lambert
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Park H, Sut TN, Ferhan AR, Yoon BK, Zhdanov VP, Cho NJ, Jackman JA. pH-Modulated Nanoarchitectonics for Enhancement of Multivalency-Induced Vesicle Shape Deformation at Receptor-Presenting Lipid Membrane Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37267480 DOI: 10.1021/acs.langmuir.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multivalent ligand-receptor interactions between receptor-presenting lipid membranes and ligand-modified biological and biomimetic nanoparticles influence cellular entry and fusion processes. Environmental pH changes can drive these membrane-related interactions by affecting membrane nanomechanical properties. Quantitatively, however, the corresponding effects on high-curvature, sub-100 nm lipid vesicles are scarcely understood, especially in the multivalent binding context. Herein, we employed the label-free localized surface plasmon resonance (LSPR) sensing technique to track the multivalent attachment kinetics, shape deformation, and surface coverage of biotin ligand-functionalized, zwitterionic lipid vesicles with different ligand densities on a streptavidin receptor-coated supported lipid bilayer under varying pH conditions (4.5, 6, 7.5). Our results demonstrate that more extensive multivalent interactions caused greater vesicle shape deformation across the tested pH conditions, which affected vesicle surface packing as well. Notably, there were also pH-specific differences, i.e., a higher degree of vesicle shape deformation was triggered at a lower multivalent binding energy in pH 4.5 than in pH 6 and 7.5 conditions. These findings support that the nanomechanical properties of high-curvature lipid membranes, especially the membrane bending energy and the corresponding responsiveness to multivalent binding interactions, are sensitive to solution pH, and indicate that multivalency-induced vesicle shape deformation occurs slightly more readily in acidic pH conditions relevant to biological environments.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Tun Naw Sut
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Vladimir P Zhdanov
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Lu Y, Allegri G, Huskens J. Recruitment of Receptors and Ligands in a Weakly Multivalent System with Omnipresent Signatures of Superselective Binding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206596. [PMID: 36876448 DOI: 10.1002/smll.202206596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Recruitment of receptors at membrane interfaces is essential in biological recognition and uptake processes. The interactions that induce recruitment are typically weak at the level of individual interaction pairs, but are strong and selective at the level of recruited ensembles. Here, a model system is demonstrated, based on the supported lipid bilayer (SLB) that mimics the recruitment process induced by weakly multivalent interactions. The weak (mm range) histidine-nickel-nitrilotriacetate (His2 -NiNTA) pair is employed owing to its ease of implementation in both synthetic and biological systems. The recruitment of receptors (and ligands) induced by the binding of His2 -functionalized vesicles on NiNTA-terminated SLBs is investigated to identify the ligand densities necessary to achieve vesicle binding and receptor recruitment. Threshold values of ligand densities appear to occur in many binding characteristics: density of bound vesicles, size and receptor density of the contact area, and vesicle deformation. Such thresholds contrast the binding of strongly multivalent systems and constitute a clear signature of the superselective binding behavior predicted for weakly multivalent interactions. This model system provides quantitative insight into the binding valency and effects of competing energetic forces, such as deformation, depletion, and entropy cost of recruitment at different length scales.
Collapse
Affiliation(s)
- Yao Lu
- Molecular Nanofabrication Group and Department for Molecules and Materials, MESA + Institute and Faculty of Science and Technology, University of Twente, Enschede, AE 7500, The Netherlands
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Giulia Allegri
- Molecular Nanofabrication Group and Department for Molecules and Materials, MESA + Institute and Faculty of Science and Technology, University of Twente, Enschede, AE 7500, The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group and Department for Molecules and Materials, MESA + Institute and Faculty of Science and Technology, University of Twente, Enschede, AE 7500, The Netherlands
| |
Collapse
|
6
|
Park H, Sut TN, Yoon BK, Zhdanov VP, Cho NJ, Jackman JA. Unraveling How Cholesterol Affects Multivalency-Induced Membrane Deformation of Sub-100 nm Lipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15950-15959. [PMID: 36515977 DOI: 10.1021/acs.langmuir.2c02252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cholesterol plays a critical role in modulating the lipid membrane properties of biological and biomimetic systems and recent attention has focused on its role in the functions of sub-100 nm lipid vesicles and lipid nanoparticles. These functions often rely on multivalent ligand-receptor interactions involving membrane attachment and dynamic shape transformations while the extent to which cholesterol can influence such interaction processes is largely unknown. To address this question, herein, we investigated the attachment of sub-100 nm lipid vesicles containing varying cholesterol fractions (0-45 mol %) to membrane-mimicking supported lipid bilayer (SLB) platforms. Biotinylated lipids and streptavidin proteins were used as model ligands and receptors, respectively, while the localized surface plasmon resonance sensing technique was employed to track vesicle attachment kinetics in combination with analytical modeling of vesicle shape changes. Across various conditions mimicking low and high multivalency, our findings revealed that cholesterol-containing vesicles could bind to receptor-functionalized membranes but underwent appreciably less multivalency-induced shape deformation than vesicles without cholesterol, which can be explained by a cholesterol-mediated increase in membrane bending rigidity. Interestingly, the extent of vesicle deformation that occurred in response to increasingly strong multivalent interactions was less pronounced for vesicles with greater cholesterol fraction. The latter trend was rationalized by taking into account the strong dependence of the membrane bending energy on the area of the vesicle-SLB contact region and such insights can aid the engineering of membrane-enveloped nanoparticles with tailored biophysical properties.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | | | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Vladimir P Zhdanov
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | | |
Collapse
|