1
|
Oliveira MKNG, Castro GP, Gonçalves SMC, Simas AM. Microwave Synthesis and Luminescence Efficiencies in Mixed-Ligand Europium Complexes. Chem Asian J 2024; 19:e202400800. [PMID: 39509540 DOI: 10.1002/asia.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Indexed: 11/15/2024]
Abstract
The microwave-assisted methodology is now extended and fine-tuned for the synthesis of mixed-ligand europium complexes with an average reaction time of 12 min. Overall, 14 different complexes were synthesized to improve luminescence using our previously proposed strategy to boost luminescence through ligand diversification, specifically by applying it to quaternary europium complexes with at least one DBM (1,3-diphenylpropane-1,3-dionate) ligand. DBM is a strong absorbant of UV radiation that can dissipate energy through nonradiative channels; thus, it is a useful molecular scaffold for sunblockers and cosmetics. Accordingly, the following luminescent tetrakis and quaternary complexes were prepared: K[Eu(DBM)4], K[Eu(β)4], K[Eu(DBM)3(β)], K[Eu(DBM)2(β)2], K[Eu(DBM)2(β)(β')], and the fully mixed complex K[Eu(DBM)(BTFA)(TTA)(HFAC)], where β can be either BTFA (4,4,4-trifluoro-1-phenylbutane-1,3-dionate), TTA (4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dionate), or HFAC (1,1,1,5,5,5-hexafluoropentane-2,4-dionate). For all the complexes, luminescence experiments were performed in chloroform and acetone solutions. Our findings confirm that mixed-ligand complexes exhibit superior quantum efficiencies compared to the average of their homoleptic counterparts. The presence of DBM in the complexes tends to dramatically increase the nonradiative decay rates of the solutions. Finally, we present formulae that provide a detailed understanding of the distinctive roles of each ligand and their relevant interactions in luminescence.
Collapse
Affiliation(s)
- Miriam K N G Oliveira
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | - Gerson P Castro
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | - Simone M C Gonçalves
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | - Alfredo M Simas
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Diaz-Rodriguez RM, Gálico DA, Chartrand D, Murugesu M. Ligand Effects on the Emission Characteristics of Molecular Eu(II) Luminescence Thermometers. J Am Chem Soc 2024; 146:34118-34129. [PMID: 39610301 DOI: 10.1021/jacs.4c13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Discrete molecular organometallic europium(II) complexes are promising functional materials due to their ability to behave as highly sensitive band-shift luminescence thermometers. Furthering our understanding of the design principles salient to the emission behavior of such systems is important for developing them in this emerging application. To this end, a series of pseudo-C4v-symmetric organometallic europium(II) complexes bearing systematically varying ligand sets were synthesized and characterized to probe the influence of subtle structural modification on their optical properties. Opto-structural correlation analyses via variable-temperature single-crystal X-ray diffraction and photoluminescence spectroscopy reveal a remarkable variability in properties among structurally similar complexes and a convoluted dependence of the emission characteristics on the stereoelectronic properties of the ligands. A few factors of particular influence are nevertheless identified, including the distance between the europium(II) ion and the basal plane of the square-pyramidal coordination polyhedron, the presence of pendant electron density that might further interact with the excited-state 5d orbitals, and, qualitatively, the metal-ligand flexibility of the construct. These results help to elucidate principles that govern the luminescence properties of organometallic europium(II) complexes with an eye to enabling the rational design of high-performance luminescence thermometers of this genre.
Collapse
Affiliation(s)
- Roberto M Diaz-Rodriguez
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Daniel Chartrand
- Department of Chemistry, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Kaynar UH, Coban MB, Hakami J, Altowyan AS, Aydin H, Ayvacikli M, Can N. Enhanced luminescence of Eu 3+ in LaAl 2B 4O 10 via energy transfer from Dy 3+ doping. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124711. [PMID: 38941750 DOI: 10.1016/j.saa.2024.124711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
In this study, an investigation was conducted on the structural and photoluminescence (PL) characteristics of LaAl2B4O10 (LAB) phosphors initially incorporated with Dy3+ and Eu3+ ions. Subsequently, the impact of varying Eu3+ concentration while maintaining a constant Dy3+ concentration was examined. Structural characterization was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDS). XRD analysis confirmed the effective embedding of both dopants into the hexagonal framework of the LAB. The PL emission spectra revealed characteristic emissions of Dy3+ (blue and yellow) and Eu3+ (red) ions. The optimized dopant concentrations of both Dy3+ and Eu3+ were observed to be 3 wt%. The dominant mechanism for concentration quenching in doped LAB phosphors was determined to be the electric dipole-dipole interaction. Co-doping with Eu3+ led to a substantial decrease in Dy3+ emission intensity (∼0.18-fold) while enhancing Eu3+ emission intensity (∼3.72-fold). The critical energy transfer distance (RC = 11.64 Å) and the analysis based on the Dexter theory confirmed that the energy transfer mechanism corresponds to dipole-dipole interaction. The color purities and correlated color temperatures (CCT) were estimated, suggesting the potential of these phosphors for warm white and red lighting applications, respectively. The observed energy transfer and luminescence properties, along with the structural and compositional characterization, highlight the promising potential of LAB:Dy3+/Eu3+ co-doped phosphors for advanced lighting and display technologies.
Collapse
Affiliation(s)
- U H Kaynar
- Bakırcay University, Faculty of Engineering and Architecture, Department of Fundamental Sciences, Menemen, Izmir, Turkiye; Bakırçay University, Biomedical Technologies Design Application and Research Center, Menemen, Izmir, Turkiye
| | - M B Coban
- Balikesir University, Faculty of Arts and Sciences, Department of Physics, Balikesir, Turkiye
| | - Jabir Hakami
- Jazan University, College of Science, Department of Physical Sciences, Physics Division, P.O. Box 114, 45142 Jazan, Saudi Arabia
| | - Abeer S Altowyan
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - H Aydin
- Central Research Laboratories, Izmir, Katip Celebi University, Turkiye; Graphene Application&Research Center, Izmir, Katip Celebi University, Turkiye
| | - M Ayvacikli
- Manisa Celal Bayar University, Hasan Ferdi Turgutlu Technology Faculty, Mechatronics Engineering, Turgutlu-Manisa, Turkiye
| | - N Can
- Jazan University, College of Science, Department of Physical Sciences, Physics Division, P.O. Box 114, 45142 Jazan, Saudi Arabia; Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia.
| |
Collapse
|
4
|
Rose T, Bursch M, Mewes JM, Grimme S. Fast and Robust Modeling of Lanthanide and Actinide Complexes, Biomolecules, and Molecular Crystals with the Extended GFN-FF Model. Inorg Chem 2024; 63:19364-19374. [PMID: 39334529 DOI: 10.1021/acs.inorgchem.4c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Lanthanides (Ln) and actinides (An) have recently become important tools in biomedical and materials science. However, the development of computational methods able to describe such elements in various environments has not kept up with the pace of the field. Addressing this challenge, this work introduces and showcases an extension of the GFN-FF to An alongside a reparameterization for Ln. This development fills a gap for fast computational methods that are out-of-the-box applicable to large f-element-containing systems with thousands of atoms. We discuss the reparameterization of the charge model and the covalent topology setup and showcase the model through various applications: Molecular dynamics simulations, optimization of Ln-containing biomolecules, and optimizations of several periodic structures. With the presented improvements, GFN-FF is a powerful method that routinely delivers robust and accurate geometries for large Ln/An systems with thousands of atoms.
Collapse
Affiliation(s)
- Thomas Rose
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | | | | | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| |
Collapse
|
5
|
Sasani Ghamsari M, Arghavan M. [Nd(NTA)2·H 2O] 3- complex with high-efficiency emission in NIR region. Heliyon 2024; 10:e33139. [PMID: 39005923 PMCID: PMC11239591 DOI: 10.1016/j.heliyon.2024.e33139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
The distinctive photophysical characteristics possessed by lanthanides, including europium, neodymium, and ytterbium, render them adaptable molecular tools for studying biological systems. Specifically, their enduring photoluminescence, precise emission spectra, and significant Stokes shifts allow for experiments not achievable with organic fluorophores or fluorescent proteins. Moreover, the capacity of these metal ions for luminescence resonance energy transfer and photon upconversion extends the potential applications of lanthanide probes even further. In this research, a new [Nd(NTA)2·H2O]3- complex was synthesized and its optical properties were assessed using practical characterization techniques such as UV-Vis absorption, photoluminescence, and FTIR. It was discovered that when the sample was excited by a 357 nm wavelength, it emitted a strong line at 1076 nm with a full-width at half maximum (FWHM) of 10 nm, a phenomenon not previously documented. The Judd-Ofelt theory and its intensity parameters were utilized in a theoretical approach to determine the fluorescence branching ratio and the radiative lifetime of the [Nd(NTA)2·H2O]3- complex. The absorption and luminescence spectra were then analyzed accordingly. Experimental findings validated the potential applications of the prepared sample in bioimaging.
Collapse
Affiliation(s)
- M. Sasani Ghamsari
- Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, 11155-3436, Tehran, Iran
| | - M.M. Arghavan
- Department of Physics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran
| |
Collapse
|
6
|
Du H, Fang P, Luo J, Liu N, Li J, Yang L, Luo Y, Wu X, Dong X, Song H, Yu G, Huang W, Liu Z, Tang J. Electrohydrodynamically Printed d-f Transition Cerium(III) Complex. J Phys Chem Lett 2024; 15:874-879. [PMID: 38237142 DOI: 10.1021/acs.jpclett.3c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The d-f transition rare earth complexes have recently emerged as a promising candidate for display applications due to the parity-allowed transition, high photoluminescence quantum yield (PLQY), short excited lifetime, and tunable emissions. Besides, inkjet printing has been regarded as an important technique for realizing full-color display. However, inkjet-printed d-f transition rare earth complexes have not been investigated. Herein, for the first time, we explored d-f transition cerium(III) complex 2-Me as the luminescent material by inkjet printing. With 1,2-dichlorobenzene as solvent and polystyrene as an additive, 2-Me film exhibits a similar emission peak and excited-state lifetime with 2-Me powder and a high PLQY of 45%, demonstrating the excellent stability of 2-Me ink. Finally, we suppressed the coffee ring effect and prepared the first inkjet-printed pattern ''HUST'' composed of d-f transition rare earth complex ink with uniform blue fluorescence. Our pioneering work provides a promising alternative for inkjet printing inks.
Collapse
Affiliation(s)
- Hainan Du
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Peiyu Fang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Nian Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jinghui Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Longbo Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yiqi Luo
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xingyou Wu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaohua Dong
- School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Gang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
7
|
Moreno-da Costa D, Zúñiga-Loyola C, Droghetti F, Robles S, Villegas-Menares A, Villegas-Escobar N, Gonzalez-Pavez I, Molins E, Natali M, Cabrera AR. Air- and Water-Stable Heteroleptic Copper (I) Complexes Bearing Bis(indazol-1-yl)methane Ligands: Synthesis, Characterisation, and Computational Studies. Molecules 2023; 29:47. [PMID: 38202630 PMCID: PMC10780253 DOI: 10.3390/molecules29010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A series of four novel heteroleptic Cu(I) complexes, bearing bis(1H-indazol-1-yl)methane analogues as N,N ligands and DPEPhos as the P,P ligand, were synthesised in high yields under mild conditions and characterised by spectroscopic and spectrometric techniques. In addition, the position of the carboxymethyl substituent in the complexes and its effect on the electrochemical and photophysical behaviour was evaluated. As expected, the homoleptic copper (I) complexes with the N,N ligands showed air instability. In contrast, the obtained heteroleptic complexes were air- and water-stable in solid and solution. All complexes displayed green-yellow luminescence in CH2Cl2 at room temperature due to ligand-centred (LC) phosphorescence in the case of the Cu(I) complex with an unsubstituted N,N ligand and metal-to-ligand charge transfer (MLCT) phosphorescence for the carboxymethyl-substituted complexes. Interestingly, proper substitution of the bis(1H-indazol-1-yl)methane ligand enabled the achievement of a remarkable luminescent yield (2.5%) in solution, showcasing the great potential of this novel class of copper(I) complexes for potential applications in luminescent devices and/or photocatalysis.
Collapse
Affiliation(s)
- David Moreno-da Costa
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - César Zúñiga-Loyola
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile; (C.Z.-L.); (S.R.)
| | - Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Stephania Robles
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile; (C.Z.-L.); (S.R.)
| | - Alondra Villegas-Menares
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Nery Villegas-Escobar
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile;
| | - Ivan Gonzalez-Pavez
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus de la UAB, 08193 Barcelona, Spain;
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Alan R. Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| |
Collapse
|
8
|
Wang M, Huang H, Wang L, Sun M, Hou H, Yang X. Carbon dots-based dual-emission proportional fluorescence sensor for ultra-sensitive visual detection of mercury ions in natural water. Colloids Surf A Physicochem Eng Asp 2023; 675:132080. [DOI: 10.1016/j.colsurfa.2023.132080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Liu L, Qin R, Fan X, Wang K, Wang X, Wang H, Chen Y, Wang J, Wang Y. Electrospinning Preparation, Structure, and Properties of Fe 3O 4/Tb(acac) 3phen/Polystyrene Bifunctional Microfibers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4409. [PMID: 37374592 DOI: 10.3390/ma16124409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Compared to single functional materials, multifunctional materials with magnetism and luminescence are more attractive and promising; Thus, it has become an important subject. In our work, bifunctional Fe3O4/Tb(acac)3phen/polystyrene) microfibers with magnetic and luminescent properties (acac: acetylacetone, phen: 1,10-phenanthroline) were synthesized by simple electrospinning process. The doping of Fe3O4 and Tb(acac)3phen made the fiber diameter larger. The surface of pure polystyrene microfibers and microfibers doped only with Fe3O4 nanoparticles were chapped similar to bark, whereas the surface of the microfibers was smoother after doping with Tb(acac)3phen complexes. The luminescent properties of the composite microfibers were systematically studied in contrast to pure Tb(acac)3phen complexes, including excitation and emission spectra, fluorescence dynamics, and the temperature dependence of intensity. Compared with the pure complexes, the thermal activation energy and thermal stability of composite microfiber was significantly improved, and the luminescence of the unit mass of Tb(acac)3phen complexes in composite microfibers was stronger than that in pure Tb(acac)3phen complexes. The magnetic properties of the composite microfibers were also investigated using hysteresis loops, and an interesting experimental phenomenon was found that the saturation magnetization of the composite microfibers gradually increased with the increase in the doping proportion of terbium complexes.
Collapse
Affiliation(s)
- Lina Liu
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Ruifei Qin
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Xiaofeng Fan
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Kexin Wang
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Xiujie Wang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Hao Wang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Yongjun Chen
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jintao Wang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Yi Wang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| |
Collapse
|
10
|
Du H, Yang L, Pang J, Shen Z, Li J, Dong X, Luo Y, Luo J, Tang J. Vacuum-deposited Rb 3CeI 6 for deep-blue-light-emitting diodes. OPTICS LETTERS 2023; 48:2777-2780. [PMID: 37262208 DOI: 10.1364/ol.486168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023]
Abstract
Recently, perovskite light-emitting diodes (PeLEDs) have exhibited outstanding performance in next-generation high-definition display applications. However, compared with green and red PeLEDs, the development of efficient and stable blue PeLEDs to meet the requirement for a wide color gamut has been a challenge. Herein, we vacuum thermally deposited a film of the lead-free rare earth halide Rb3CeI6, which shows deep blue emission with peaks at 427 nm and 468 nm. Due to the parity-allowed 5d-4f transition of Ce(III), the excited-state lifetime is as short as 22.3 ns (427 nm) and 25 ns (468 nm), respectively. The photoluminescence quantum yield (PLQY) is optimized to 51% by regulating the nucleation and growth of Rb3CeI6 grains. In a prototype rare earth light-emitting diode (ReLED) device, a thin insulating Al2O3 layer (5 nm) is inserted between the electron transport layer (ETL) and the emitting layer (EML, Rb3CeI6) to balance the carriers and reduce the dark current. The device shows a maximum luminance and EQE of 98 cd m-2 and 0.67%, respectively, and the electroluminescence (EL) spectrum maintains stability with changes in the operating voltage. In addition, the corresponding CIE coordinate is (0.15, 0.06), which closely matches the Rec. 2020 standard (0.131, 0.046).
Collapse
|
11
|
Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228053. [PMID: 36432156 PMCID: PMC9694868 DOI: 10.3390/molecules27228053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, 3,5-dimethylpyrazolyl or 3-trifluoromethylpyrazole, were designed and synthesized. Due to the varied steric hindrance of the ligands, different numbers of solvent molecules (tetrahydrofuran) are participated to saturate the coordination structure. These complexes showed blue-green to yellow emissions with maximum wavelength in the range of 490-560 nm, and short excited state lifetimes of 30-540 ns. Among them, the highest photoluminescence quantum yield can reach 100%. In addition, when the complexes were heated under vacuum or nitrogen atmosphere, they finally transformed into the complexes of Eu(II) and corresponding tri(pyrazolyl)borate ligands and sublimated away.
Collapse
|
12
|
Zhang H, Zhang H. Special Issue: Rare earth luminescent materials. LIGHT, SCIENCE & APPLICATIONS 2022; 11:260. [PMID: 36055990 PMCID: PMC9440020 DOI: 10.1038/s41377-022-00956-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This special issue covers a series of cutting-edge works on exploring novel rare earth luminescent materials and their applications in lighting, display, information storage, sensing, and bioimaging as well as therapy. [Image: see text]
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hong Zhang
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P. O. Box 94157, 1090 GD, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Yang L, Luo J, Gao L, Song B, Tang J. Inorganic Lanthanide Compounds with f-d Transition: From Materials to Electroluminescence Devices. J Phys Chem Lett 2022; 13:4365-4373. [PMID: 35544383 DOI: 10.1021/acs.jpclett.2c00927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid development of the panel display market, demand for efficient light emitters as active layers in electroluminescence (EL) devices has significantly increased. Luminescent inorganic lanthanide compounds (ILCs) with a characteristic f-d transition are particularly preferred for EL devices because of their high photoluminescent quantum yield, short excited-state lifetime, tunable emission spectra, and high thermal stability. In this Perspective, we first present an overview of inorganic lanthanide compounds with an emphasis on the mechanisms and characteristics of f-d emission. Then, the comprehensive advances of lanthanide element-doped inorganic compounds for EL study in recent decades are summarized. Moreover, the recent progress in directly employing ILCs for EL applications and rational improvement strategies in EL performance are highlighted. Last, we summarize the current challenges and opportunities of ILC-based EL devices as well as future improvement directions.
Collapse
Affiliation(s)
- Longbo Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Boxiang Song
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|