1
|
Zeng L, Hu X, Zhou Y, Boubeche M, Guo R, Liu Y, Luo SC, Guo S, Li K, Yu P, Zhang C, Guo WM, Sun L, Yao DX, Luo H. Superconductivity in the High-Entropy Ceramics Ti 0.2 Zr 0.2 Nb 0.2 Mo 0.2 Ta 0.2 C x with Possible Nontrivial Band Topology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305054. [PMID: 38050864 PMCID: PMC10837384 DOI: 10.1002/advs.202305054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Indexed: 12/07/2023]
Abstract
Topological superconductors have drawn significant interest from the scientific community due to the accompanying Majorana fermions. Here, the discovery of electronic structure and superconductivity (SC) in high-entropy ceramics Ti0.2 Zr0.2 Nb0.2 Mo0.2 Ta0.2 Cx (x = 1 and 0.8) combined with experiments and first-principles calculations is reported. The Ti0.2 Zr0.2 Nb0.2 Mo0.2 Ta0.2 Cx high-entropy ceramics show bulk type-II SC with Tc ≈ 4.00 K (x = 1) and 2.65 K (x = 0.8), respectively. The specific heat jump (∆C/γTc ) is equal to 1.45 (x = 1) and 1.52 (x = 0.8), close to the expected value of 1.43 for the BCS superconductor in the weak coupling limit. The high-pressure resistance measurements show a robust SC against high physical pressure in Ti0.2 Zr0.2 Nb0.2 Mo0.2 Ta0.2 C, with a slight Tc variation of 0.3 K within 82.5 GPa. Furthermore, the first-principles calculations indicate that the Dirac-like point exists in the electronic band structures of Ti0.2 Zr0.2 Nb0.2 Mo0.2 Ta0.2 C, which is potentially a topological superconductor. The Dirac-like point is mainly contributed by the d orbitals of transition metals M and the p orbitals of C. The high-entropy ceramics provide an excellent platform for the fabrication of novel quantum devices, and the study may spark significant future physics investigations in this intriguing material.
Collapse
Affiliation(s)
- Lingyong Zeng
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, China
| | - Xunwu Hu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yazhou Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mebrouka Boubeche
- Songshan Lake Materials Laboratory, University Innovation Town, Building A1, Dongguan, Guang Dong, 523808, China
| | - Ruixin Guo
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- International Quantum Academy, Shenzhen, 518048, China
| | - Yang Liu
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Si-Chun Luo
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shu Guo
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- International Quantum Academy, Shenzhen, 518048, China
| | - Kuan Li
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, China
| | - Peifeng Yu
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, China
| | - Chao Zhang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, China
| | - Wei-Ming Guo
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liling Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dao-Xin Yao
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
- International Quantum Academy, Shenzhen, 518048, China
| | - Huixia Luo
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, China
| |
Collapse
|
2
|
Marychev PM, Chen Y. The Type-II/Type-I Crossover in Dirty Ferromagnetic Superconductors. J Phys Chem Lett 2023; 14:11573-11579. [PMID: 38099821 DOI: 10.1021/acs.jpclett.3c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In this work, we investigate the intertype (IT) domain in strongly disordered ferromagnetic superconductors with a Curie temperature lower than the superconducting critical temperature. In such unique materials, the coexistence of superconductivity and ferromagnetism allows for the exploration of both unconventional superconductivity and the interplay between magnetism and superconductivity. The study utilizes an extended Ginzburg-Landau model for the dirty limit to calculate the boundaries of the IT domain, which is characterized by a complex vortex-vortex interaction and exotic vortex configurations. The analysis reveals that the IT domain in dirty ferromagnetic superconductors is not qualitatively different from that in the clean case and remains similarly large, suggesting that disorder does not hinder the exploration of the rich variety of IT superconductivity in ferromagnetic superconductors. This work expands our understanding of the interplay between superconductivity and magnetism in complex materials and could guide future experimental studies.
Collapse
Affiliation(s)
| | - Yajiang Chen
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Yadav S, Jana S, Panigrahi G, Malladi SK, Niranjan MK, Prakash J. Five coordinated Mn in Ba 4Mn 2Si 2Te 9: synthesis, crystal structure, physical properties, and electronic structure. Dalton Trans 2022; 51:9265-9277. [DOI: 10.1039/d2dt01167k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new structure type Ba4Mn2Si2Te9 containing unique MnTe5 units is synthesized. The structure comprises two independent Mn atoms, each with 50% occupancy. It is a narrow bandgap semiconductor (Eg = 0.6(1) eV) consistent with the DFT studies.
Collapse
Affiliation(s)
- Sweta Yadav
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Subhendu Jana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Gopabandhu Panigrahi
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Sairam K. Malladi
- Department of Materials Science & Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Manish K. Niranjan
- Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Jai Prakash
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|