1
|
Zhang S, Fu N, Cui W, Peng S, Srivatsan N, Chen Z. Probing the Saltwater Immersion Effect on Buried Interfacial Structures between a Sealant and Adhesion Promoter at the Molecular Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39150881 DOI: 10.1021/acs.langmuir.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
In this research, we used sum frequency generation vibrational spectroscopy to investigate the buried interface of a thiol-epoxy model aerospace sealant in contact with a silane-based adhesion promoter (6111) following exposures to 3% saltwater at elevated temperatures and elevated temperatures alone. The results suggest that the saltwater caused a change at the interface between the adhesion promoter and sealant, while an elevated temperature of 60 °C itself did not affect the interfacial structure noticeably. Model hydrolyzed and nonhydrolyzed silanes were also used in the study to compare with the adhesion promoter 6111 to understand the interfacial behavior of main silane components in 6111 as well as their potential role in adhesion. The amino silane in 6111 likely segregates more at the sealant/adhesion promoter interface and interacts with the sealant compared to the vinyl silane. The results imply that the saltwater immersion process led to the disordering of the adhesion promoter/sealant interface (caused by interfacial structural randomization), which could potentially have implications for adhesion.
Collapse
Affiliation(s)
- Shuqing Zhang
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Na Fu
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | - Weibin Cui
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | - Shane Peng
- PPG Aerospace, 2890 W. Empire Ave, Burbank, California 91504, United States
| | | | - Zhan Chen
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Gao J, Ouyang G, Zhou P, Shang P, Long H, Ji L, Qu Z, Guo M, Yang Y, Zhao F, Yin X, Ke Y, Wei Z, Zhang Z, Yan X, Liu M, Qiao Y, Song Y. Spatiotemporal-Dependent Confinement Effect of Bubble Swarms Enables a Fractal Hierarchical Assembly with Promoted Chirality. J Am Chem Soc 2024; 146:18104-18116. [PMID: 38899355 DOI: 10.1021/jacs.4c05141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The submarine-confined bubble swarm is considered an important constraining environment for the early evolution of living matter due to the abundant gas/water interfaces it provides. Similarly, the spatiotemporal characteristics of the confinement effect in this particular scenario may also impact the origin, transfer, and amplification of chirality in organisms. Here, we explore the confinement effect on the chiral hierarchical assembly of the amphiphiles in the confined bubble array stabilized by the micropillar templates. Compared with the other confinement conditions, the assembly in the bubble scenario yields a fractal morphology and exhibits a unique level of the chiral degree, ordering, and orientation consistency, which can be attributed to the characteristic interfacial effects of the rapidly formed gas/water interfaces. Thus, molecules with a balanced amphiphilicity can be more favorable for the promotion. Not limited to the pure enantiomers, chiral amplification of the enantiomer-mixed assembly is observed only in the bubble scenario. Beyond the interfacial mechanism, the fast formation kinetics of the confined liquid bridges in the bubble scenario endows the assembly with the tunable hierarchical morphology when regulating the amphiphilicity, aggregates, and confined spaces. Furthermore, the chiral-induced spin selectivity (CISS) effect of the fractal hierarchical assembly was systematically investigated, and a strategy based on photoisomerization was developed to efficiently modulate the CISS effect. This work provides insights into the robustness of confined bubble swarms in promoting a chiral hierarchical assembly and the potential applications of the resulting chiral hierarchical patterns in solid-state spintronic and optical devices.
Collapse
Affiliation(s)
- Jie Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guanghui Ouyang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Peng Zhou
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Peng Shang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haoran Long
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Lukang Ji
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhiyuan Qu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengmeng Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongrui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Zhongming Wei
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Zhen Zhang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuehai Yan
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Minghua Liu
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yali Qiao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Wang Z, Guo Z, Liu Y, Cui L, Wang Y, Yu H, Ji L. Photoisomerization and thermal reconstruction induced supramolecular chirality inversion in nanofiber determined by minority isomer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124138. [PMID: 38503253 DOI: 10.1016/j.saa.2024.124138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Here, amphiphile GCH based on glutamide-cyanostilbene is designed and synthesized, it is found that it can assembly in acetonitrile, and shows circular dichroism signals. After Z-E isomerizaition by UV irradiation, the CD signal of the assembly can be inverted. Unexpectedly, after another heating and cooling process, the circular dichroism signals can be totally inverted even though the E-isomers are in minority. Finally, the molecular dynamics (MD) simulations deeply elucidate the supramolecuar chirality inversion mechanism. This work brings some new insights into the control of chirality inversion, which may provide a perspective for the smart chiroptical materials construction.
Collapse
Affiliation(s)
- Zhixia Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ziwei Guo
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Linfeng Cui
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Yuanyuan Wang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
4
|
Yu C, Shang P, Guo Y, Zhang Z. In Situ Heterodyne-Detected Second-Harmonic Generation Study of the Influence of Cholesterol on Dye Molecule Adsorption on Lipid Membrane. J Phys Chem B 2024; 128:1892-1899. [PMID: 38354410 DOI: 10.1021/acs.jpcb.3c07130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Cholesterol plays an essential role in regulating the functionality of biomembranes. This study employed in situ second-harmonic generation (SHG) to investigate the adsorption behavior of the dye molecule 4-(4-(diethylamino)styryl)-N-methyl-pyridinium iodide (D289) on a biomimic membrane composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG) and cholesterol. The time-dependent polarization SHG intensity exhibited an initial rapid increase, followed by a subsequent decline. The initial increased SHG intensity is responsible for the electrostatic interaction-driven adsorption of D289 onto the membrane, while the decrease in the SHG signal results from the broadening of the orientation distribution within the membrane. Heterodyne-detected SHG (HD-SHG) measurements demonstrated that the adsorption of dye molecules influenced the phase of the induced electric field. The interfacial potential Φ(0) as a function of time was measured, and we found that even after reaching a stable Stern layer state, the diffusion layer continued to exhibit a dynamic change. This study offers a comprehensive understanding of the influence of cholesterol on adsorption, reorientation dynamics, and dynamic changes in the reorientation of water in the diffusion layer.
Collapse
Affiliation(s)
- Changhui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Peng Shang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhao HY, Gou X, Pei YR, Jin LY. Chirality Amplification Over the Morphology Control of the Rod-Coil Molecules with Lateral Methyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37294904 DOI: 10.1021/acs.langmuir.3c00864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the context of sustainable development, research regarding chirality has aroused enormous attention. Concurrently, chiral self-assembly is one of the most important subjects in supramolecular research, which can broaden the applications of chiral materials. This study focuses on the morphology control of amphiphilic rod-coil molecules composed of the rigid hexaphenyl unit and flexible oligoethylene and butoxy groups containing lateral methyl groups, carried out using an enantioseparation application. The methyl side chain being located on different blocks influences the driving force through steric hindrance, which determines the direction and degree of tilted packing during the π-π stacking of the self-assembly process. Interestingly, the amphiphilic rod-coil molecules aggregated into long helical nano-fibers, which further hierarchically aggregated into nano-sheets or nano-tubes upon increasing the concentration of the THF/H2O solution. In particular, the hierarchical-chiral assembly effectively amplified the chirality and was validated by the strong Cotton signals; playing a vital role in the enantioselective nucleophilic substitution reaction. These results provide new insights into the applications of chiral self-assemblies and soft chiral materials.
Collapse
Affiliation(s)
- Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| |
Collapse
|
6
|
Zeng D, Hu HF, Ming JB, Wang W. Hierarchically Organized Cocrystal of Tetra-Anionic Porphyrin and Di-Cationic Viologen: Ion Conformations, Supramolecule Interactions, and Porphyrin Arrays. Chemistry 2023; 29:e202203188. [PMID: 36511145 DOI: 10.1002/chem.202203188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Ionic co-assembly of tetra-anionic porphyrins has been extensively researched in the construction of hierarchically organized architectures with potential application value in organic semiconductors, sunlight catalysts and supramolecular chirality systems. However, such architectures are difficult to grow to a size suitable for single-crystal X-ray diffraction (SCXRD); the lack of single-crystal structures of these architectures leads to challenges in gaining deeper comprehension about that. This study reports a hierarchically organized cocrystal of meso-tetra(4-sulfonato-phenyl)-porphyrin (TSPP4- ) and N, N'-diethyl-viologen (DEV2+ ), wherein wave-like and saddle-like TSPP4- ions co-aggregate at a stoichiometric ratio of 1 : 2 to form unique porphyrin arrays; the spectrum characteristics and calculated coulombic exciton coupling energy show that these porphyrin arrays are J-aggregates. We prove that the distortion of porphyrin ring of TSPP4- strongly correlates with the deflection of its phenyl groups. The crystal comprises six different ionic conformations, and the multiplicity of ionic conformation leads to intricate supramolecular interactions.
Collapse
Affiliation(s)
- Dong Zeng
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Fen Hu
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jiang-Bo Ming
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng, Shanxi, 044000, P. R. China
| | - Wei Wang
- Center for Synthetic Soft Materials Key Laboratory of Functional Polymer Materials of the Ministry of Education and Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|