1
|
Richer M, Sánchez-Díaz G, Martínez-González M, Chuiko V, Kim TD, Tehrani A, Wang S, Gaikwad PB, de Moura CEV, Masschelein C, Miranda-Quintana RA, Gerolin A, Heidar-Zadeh F, Ayers PW. PyCI: A Python-scriptable library for arbitrary determinant CI. J Chem Phys 2024; 161:132502. [PMID: 39365017 DOI: 10.1063/5.0219010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/21/2024] [Indexed: 10/05/2024] Open
Abstract
PyCI is a free and open-source Python library for setting up and running arbitrary determinant-driven configuration interaction (CI) computations, as well as their generalizations to cases where the coefficients of the determinant are nonlinear functions of optimizable parameters. PyCI also includes functionality for computing the residual correlation energy, along with the ability to compute spin-polarized one- and two-electron (transition) reduced density matrices. PyCI was originally intended to replace the ab initio quantum chemistry functionality in the HORTON library but emerged as a standalone research tool, primarily intended to aid in method development, while maintaining high performance so that it is suitable for practical calculations. To this end, PyCI is written in Python, adopting principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. Computationally intensive steps, notably operations related to generating Slater determinants and computing their expectation values, are delegated to low-level C++ code. This article marks the official release of the PyCI library, showcasing its functionality and scope.
Collapse
Affiliation(s)
- Michelle Richer
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Gabriela Sánchez-Díaz
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Marco Martínez-González
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Valerii Chuiko
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Taewon David Kim
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Alireza Tehrani
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Shuoyang Wang
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Pratiksha B Gaikwad
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Carlos E V de Moura
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Cassandra Masschelein
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | | | - Augusto Gerolin
- Department of Mathematics and Statistics, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, Ontario K1N 6N5, Canada
- Nexus for Quantum Technologies, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Farnaz Heidar-Zadeh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Miranda-Quintana RA, Kim TD, Lokhande RA, Richer M, Sánchez-Díaz G, Gaikwad PB, Ayers PW. Flexible Ansatz for N-Body Perturbation Theory. J Phys Chem A 2024; 128:3458-3467. [PMID: 38651558 DOI: 10.1021/acs.jpca.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We propose a new perturbation theory framework that can be used to help with the projective solution of the Schrödinger equation for arbitrary wave functions. This Flexible Ansatz for N-body Perturbation Theory (FANPT) is based on our previously proposed Flexible Ansatz for the N-body Configuration Interaction (FANCI). We derive recursive FANPT expressions, including arbitrary orders in the perturbation hierarchy. We show that the FANPT equations are well-behaved across a wide range of conditions, including static correlation-dominated configurations and highly nonlinear wave functions.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - Taewon D Kim
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Rugwed A Lokhande
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - M Richer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Gabriela Sánchez-Díaz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Pratiksha B Gaikwad
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
3
|
Alcoba DR, Oña OB, Torre A, Lain L, Sierra G, Massaccesi GE. A variance-based optimization for determining ground and excited N-electron wave functions within the doubly occupied configuration interaction scheme. J Chem Phys 2024; 160:164107. [PMID: 38656446 DOI: 10.1063/5.0191857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
This work describes optimizations of N-electron system wave functions by means of the simulated annealing technique within the doubly occupied configuration interaction framework. Using that technique, we minimize the energy variance of a Hamiltonian, providing determinations of wave functions corresponding to ground or excited states in an identical manner. The procedure that allows us to determine electronic spectra can be performed using treatments of restricted or unrestricted types. The results found in selected systems, described in terms of energy, spin, and wave function, are analyzed, showing the performance of each method. We also compare these results with those arising from more traditional approaches that minimize the energy, in both restricted and unrestricted versions, and with those obtained from the full configuration interaction treatment.
Collapse
Affiliation(s)
- Diego R Alcoba
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ofelia B Oña
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Cientıficas y Tócnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Guadalupe Sierra
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Gustavo E Massaccesi
- Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Instituto de Investigaciones Matemáticas Luis Santaló, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
4
|
Gaikwad PB, Kim TD, Richer M, Lokhande RA, Sánchez-Díaz G, Limacher PA, Ayers PW, Miranda-Quintana RA. Coupled cluster-inspired geminal wavefunctions. J Chem Phys 2024; 160:144108. [PMID: 38597308 DOI: 10.1063/5.0202035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Electron pairs have an illustrious history in chemistry, from powerful concepts to understanding structural stability and reactive changes to the promise of serving as building blocks of quantitative descriptions of the electronic structure of complex molecules and materials. However, traditionally, two-electron wavefunctions (geminals) have not enjoyed the popularity and widespread use of the more standard single-particle methods. This has changed recently, with a renewed interest in the development of geminal wavefunctions as an alternative to describing strongly correlated phenomena. Hence, there is a need to find geminal methods that are accurate, computationally tractable, and do not demand significant input from the user (particularly via cumbersome and often ill-behaved orbital optimization steps). Here, we propose new families of geminal wavefunctions inspired by the pair coupled cluster doubles ansatz. We present a new hierarchy of two-electron wavefunctions that extends the one-reference orbital idea to other geminals. Moreover, we show how to incorporate single-like excitations in this framework without leaving the quasiparticle picture. We explore the role of imposing seniority restrictions on these wavefunctions and benchmark these new methods on model strongly correlated systems.
Collapse
Affiliation(s)
- Pratiksha B Gaikwad
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Taewon D Kim
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - M Richer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Rugwed A Lokhande
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Gabriela Sánchez-Díaz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Peter A Limacher
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | |
Collapse
|
5
|
Johnson PA, DePrince AE. Single Reference Treatment of Strongly Correlated H 4 and H 10 Isomers with Richardson-Gaudin States. J Chem Theory Comput 2023; 19:8129-8146. [PMID: 37955440 DOI: 10.1021/acs.jctc.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Richardson-Gaudin (RG) states are employed as a variational wave function ansatz for strongly correlated isomers of H4 and H10. In each case, a single RG state describes the seniority-zero sector quite well. Simple natural orbital functionals offer a cheap and reasonable approximation of the outstanding weak correlation in the seniority-zero sector, while systematic improvement is achieved by performing a configuration interaction in terms of RG states.
Collapse
Affiliation(s)
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
6
|
Sitkiewicz SP, Matito E, Luis JM, Zaleśny R. Pitfall in simulations of vibronic TD-DFT spectra: diagnosis and assessment. Phys Chem Chem Phys 2023; 25:30193-30197. [PMID: 37905423 DOI: 10.1039/d3cp04276f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In this Communication, we study the effect of spurious oscillations in the profiles of energy derivatives with respect to nuclear coordinates calculated with density functional approximations (DFAs) for formaldehyde, pyridine, and furan in their ground and electronic excited states. These spurious oscillations, which can only be removed using extensive integration grids that increase enormously the CPU cost of DFA calculations, are significant in the case of third- and fourth-order energy derivatives of the ground and excited states computed by M06-2X and ωB97X functionals. The errors in question propagate to anharmonic vibronic spectra computed under the Franck-Condon approximation, i.e., positions and intensities of vibronic transitions are affected to a large extent (shifts as significant as hundreds of cm-1 were observed). On the other hand, the LC-BLYP and CAM-B3LYP functionals show a much less pronounced effect due to spurious oscillations. Based on the results presented herein, we recommend either LC-BLYP or CAM-B3LYP with integration grids (250, 974) (or larger) for numerically stable simulations of vibronic spectra including anharmonic effects.
Collapse
Affiliation(s)
- Sebastian P Sitkiewicz
- Wrocław Centre for Networking and Supercomputing, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław PL-50370, Poland.
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, Donostia 20018, Euskadi, Spain
- Ikerbasque Foundation for Science, Bilbao 48011, Euskadi, Spain
| | - Josep M Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003, Girona, Catalonia, Spain.
| | - Robert Zaleśny
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| |
Collapse
|
7
|
Kossoski F, Loos PF. Seniority and Hierarchy Configuration Interaction for Radicals and Excited States. J Chem Theory Comput 2023. [PMID: 37965728 DOI: 10.1021/acs.jctc.3c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Hierarchy configuration interaction (hCI) has recently been introduced as an alternative configuration interaction (CI) route combining excitation degree and seniority number and has been shown to efficiently recover both dynamic and static correlations for closed-shell molecular systems [ J. Phys. Chem. Lett. 2022, 13, 4342]. Here we generalize hCI for an arbitrary reference determinant, allowing calculations for radicals and excited states in a state-specific way. We gauge this route against excitation-based CI (eCI) and seniority-based CI (sCI) by evaluating how different ground-state properties of radicals converge to the full CI limit. We find that hCI outperforms or matches eCI, whereas sCI is far less accurate, in line with previous observations for closed-shell molecules. Employing second-order Epstein-Nesbet (EN2) perturbation theory as a correction significantly accelerates the convergence of hCI and eCI. We further explore various hCI and sCI models to calculate the excitation energies of closed- and open-shell systems. Our results underline that the choice of both the reference determinant and the set of orbitals drives the fine balance between correlation of ground and excited states. State-specific hCI2 and higher-order models perform similarly to their eCI counterparts, whereas lower orders of hCI deliver poor results unless supplemented by the EN2 correction, which substantially improves their accuracy. In turn, sCI1 produces decent excitation energies for radicals, encouraging the development of related seniority-based coupled-cluster methods.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| |
Collapse
|
8
|
Tecmer P, Gałyńska M, Szczuczko L, Boguslawski K. Geminal-Based Strategies for Modeling Large Building Blocks of Organic Electronic Materials. J Phys Chem Lett 2023; 14:9909-9917. [PMID: 37903084 PMCID: PMC10641881 DOI: 10.1021/acs.jpclett.3c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023]
Abstract
We elaborate on unconventional electronic structure methods based on geminals and their potential to advance the rapidly developing field of organic photovoltaics (OPVs). Specifically, we focus on the computational advantages of geminal-based methods over standard approaches and identify the critical aspects of OPV development. Examples are reliable and efficient computations of orbital energies, electronic spectra, and van der Waals interactions. Geminal-based models can also be combined with quantum embedding techniques and a quantum information analysis of orbital interactions to gain a fundamental understanding of the electronic structures and properties of realistic OPV building blocks. Furthermore, other organic components present in, for instance, dye-sensitized solar cells (DSSCs) represent another promising scope of application. Finally, we provide numerical examples predicting the properties of a small building block of OPV components and two carbazole-based dyes proposed as possible DSSC sensitizers.
Collapse
Affiliation(s)
- Paweł Tecmer
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Marta Gałyńska
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Lena Szczuczko
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
9
|
Kossoski F, Loos PF. State-Specific Configuration Interaction for Excited States. J Chem Theory Comput 2023; 19:2258-2269. [PMID: 37024102 PMCID: PMC10134430 DOI: 10.1021/acs.jctc.3c00057] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
We introduce and benchmark a systematically improvable route for excited-state calculations, labeled state-specific configuration interaction (ΔCI), which is a particular realization of multiconfigurational self-consistent field and multireference configuration interaction. Starting with a reference built from optimized configuration state functions, separate CI calculations are performed for each targeted state (hence, state-specific orbitals and determinants). Accounting for single and double excitations produces the ΔCISD model, which can be improved with second-order Epstein-Nesbet perturbation theory (ΔCISD+EN2) or a posteriori Davidson corrections (ΔCISD+Q). These models were gauged against a vast and diverse set of 294 reference excitation energies. We have found that ΔCI is significantly more accurate than standard ground-state-based CI, whereas close performances were found between ΔCISD and EOM-CC2 and between ΔCISD+EN2 and EOM-CCSD. For larger systems, ΔCISD+Q delivers more accurate results than EOM-CC2 and EOM-CCSD. The ΔCI route can handle challenging multireference problems, singly and doubly excited states, from closed- and open-shell species, with overall comparable accuracy and thus represents a promising alternative to more established methodologies. In its current form, however, it is reliable only for relatively low-lying excited states.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
10
|
Petrusevich EF, Bousquet MHE, Ośmiałowski B, Jacquemin D, Luis JM, Zaleśny R. Cost-Effective Simulations of Vibrationally-Resolved Absorption Spectra of Fluorophores with Machine-Learning-Based Inhomogeneous Broadening. J Chem Theory Comput 2023; 19:2304-2315. [PMID: 37096370 PMCID: PMC10134414 DOI: 10.1021/acs.jctc.2c01285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The results of electronic and vibrational structure simulations are an invaluable support for interpreting experimental absorption/emission spectra, which stimulates the development of reliable and cost-effective computational protocols. In this work, we contribute to these efforts and propose an efficient first-principle protocol for simulating vibrationally-resolved absorption spectra, including nonempirical estimations of the inhomogeneous broadening. To this end, we analyze three key aspects: (i) a metric-based selection of density functional approximation (DFA) so to benefit from the computational efficiency of time-dependent density function theory (TD-DFT) while safeguarding the accuracy of the vibrationally-resolved spectra, (ii) an assessment of two vibrational structure schemes (vertical gradient and adiabatic Hessian) to compute the Franck-Condon factors, and (iii) the use of machine learning to speed up nonempirical estimations of the inhomogeneous broadening. In more detail, we predict the absorption band shapes for a set of 20 medium-sized fluorescent dyes, focusing on the bright ππ★ S0 → S1 transition and using experimental results as references. We demonstrate that, for the studied 20-dye set which includes structures with large structural variability, the preselection of DFAs based on an easily accessible metric ensures accurate band shapes with respect to the reference approach and that range-separated functionals show the best performance when combined with the vertical gradient model. As far as band widths are concerned, we propose a new machine-learning-based approach for determining the inhomogeneous broadening induced by the solvent microenvironment. This approach is shown to be very robust offering inhomogeneous broadenings with errors as small as 2 cm-1 with respect to genuine electronic-structure calculations, with a total CPU time reduced by 98%.
Collapse
Affiliation(s)
- Elizaveta F. Petrusevich
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | | | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, PL-87-100 Toruń, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Josep M. Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
11
|
Damour Y, Quintero-Monsebaiz R, Caffarel M, Jacquemin D, Kossoski F, Scemama A, Loos PF. Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality. J Chem Theory Comput 2023; 19:221-234. [PMID: 36548519 DOI: 10.1021/acs.jctc.2c01111] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report ground- and excited-state dipole moments and oscillator strengths (computed in different "gauges" or representations) of full configuration interaction (FCI) quality using the selected configuration interaction method known as Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI). Thanks to a set encompassing 35 ground- and excited-state properties computed in 11 small molecules, the present near-FCI estimates allow us to assess the accuracy of high-order coupled-cluster (CC) calculations including up to quadruple excitations. In particular, we show that incrementing the excitation degree of the CC expansion (from CC with singles and doubles (CCSD) to CC with singles, doubles, and triples (CCSDT) or from CCSDT to CC with singles, doubles, triples, and quadruples (CCSDTQ)) reduces the average error with respect to the near-FCI reference values by approximately 1 order of magnitude.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Raúl Quintero-Monsebaiz
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.,Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
12
|
Burton HGA. Generalized nonorthogonal matrix elements. II: Extension to arbitrary excitations. J Chem Phys 2022; 157:204109. [DOI: 10.1063/5.0122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Electronic structure methods that exploit nonorthogonal Slater determinants face the challenge of efficiently computing nonorthogonal matrix elements. In a recent publication [H. G. A. Burton, J. Chem. Phys. 154, 144109 (2021)], I introduced a generalized extension to the nonorthogonal Wick’s theorem that allows matrix elements to be derived between excited configurations from a pair of reference determinants with a singular nonorthogonal orbital overlap matrix. However, that work only provided explicit expressions for one- and two-body matrix elements between singly- or doubly-excited configurations. Here, this framework is extended to compute generalized nonorthogonal matrix elements between higher-order excitations. Pre-computing and storing intermediate values allows one- and two-body matrix elements to be evaluated with an [Formula: see text] scaling relative to the system size, and the LIBGNME computational library is introduced to achieve this in practice. These advances make the evaluation of all nonorthogonal matrix elements almost as easy as their orthogonal counterparts, facilitating a new phase of development in nonorthogonal electronic structure theory.
Collapse
Affiliation(s)
- Hugh G. A. Burton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|