1
|
Long ZC, Shah A, Banjade H, Liu KW, Xu HG, Zheng W, Jena P. Observation of halogen-like behavior of gold in fluorinated bimetallic CoAuF1-2- and CuAuF1-2- clusters: Anion photoelectron spectroscopy and density functional theory. J Chem Phys 2024; 161:124304. [PMID: 39319645 DOI: 10.1063/5.0224002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Using size-selected anion photoelectron spectroscopy and density functional theory, we investigated the structures and properties of fluorinated bimetallic clusters CoAuF1-2- and CuAuF1-2- and their neutrals. Both experimental and theoretical results show that in these cluster anions, Au behaves like a halogen atom. For example, the measured vertical detachment energies (VDEs) of CoAuF- (2.00 ± 0.08 eV) and CuAuF- (3.8 ± 0.1 eV) are close to those of CoF2- (2.12 ± 0.08 eV) and CuF2- (3.58 ± 0.08 eV), respectively. The theoretical results show that the geometries and electronic structures of CoAuF- and CuAuF- are similar to those of CoF2- and CuF2-. The natural population analysis and natural electron configuration analyses further confirm that the electronic properties of Au in MAuF- (M = Co, Cu) mimic those of MF2-. In addition, the electron localization function analyses show that the M-Au chemical bonds are similar to the corresponding M-F chemical bonds, providing evidence for the ionic nature of the interactions. When a second F atom is attached to the CoAuF- and CuAuF- clusters, the VDEs of the resulting CoAuF2- and CuAuF2- are 4.38 ± 0.08 eV and 3.71 ± 0.08 eV, respectively, indicating their superhalogen character as these values are higher than those of halogen anions. The results may be useful for understanding the properties of gold at the nanoscale that play an important role in catalysis and nanotechnology.
Collapse
Affiliation(s)
- Zhen-Chao Long
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aaron Shah
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, USA
| | - Huta Banjade
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, USA
| | - Kai-Wen Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, USA
| |
Collapse
|
2
|
Harris RM, Zhu Z, Tufekci BA, Deepika, Jena P, Peterson KA, Bowen KH. Electronic Structure and Anion Photoelectron Spectroscopy of Uranium-Gold Clusters UAu n-, n = 3-7. J Phys Chem A 2023; 127:7186-7197. [PMID: 37590893 DOI: 10.1021/acs.jpca.3c03452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A collaborative effort between experiment and theory toward elucidating the electronic and molecular structures of uranium-gold clusters is presented. Anion photoelectron spectra of UAun-(n = 3-7) were taken at the third (355 nm) and fourth (266 nm) harmonics of a Nd:YAG laser, as well as excimer (ArF 193 nm) photon energies, where the experimental adiabatic electron affinities and vertical detachment energies values were measured. Complementary first-principles calculations were subsequently carried out to corroborate experimentally determined electron detachment energies and to determine the geometry and electronic structure for each cluster. Except for the ring-like neutral isomer of UAu6 where one unpaired electron is spread over the Au atoms, all other neutral and anionic UAun clusters (n = 3-7) were calculated to possess open-shell electrons with the unpaired electrons localized on the central U atom. The smaller clusters closely resemble the analogous UFn species, but significant deviations are seen starting with UAu5 where a competition between U-Au and Au-Au bonding begins to become apparent. The UAu6 system appears to mark a transition where Au-Au interactions begin to dominate, where both a ring-like and two heavily distorted octahedral structures around the central U atom are calculated to be nearly isoenergetic. With UAu7, only ring-like structures are calculated. Overall, the calculated electron detachment energies are in good agreement with the experimental values.
Collapse
Affiliation(s)
- Rachel M Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Deepika
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Purusottam Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Janus behavior of Au atoms interacting with fluorine. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Harris RM, Zhu Z, Deepika, Tufekci BA, Peterson K, Jena P, Bowen KH. Au as a Surrogate for F: The Case of UAu 6 vs UF 6. J Am Chem Soc 2022; 144:19685-19688. [DOI: 10.1021/jacs.2c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel M. Harris
- Department of Chemistry, Johns Hopkins University; Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University; Baltimore, Maryland 21218, United States
| | - Deepika
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Burak A. Tufekci
- Department of Chemistry, Johns Hopkins University; Baltimore, Maryland 21218, United States
| | - Kirk Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University; Baltimore, Maryland 21218, United States
| |
Collapse
|