1
|
Arumugam D, Subramani D, Muralidharan A, Ramasamy S. Demystifying Synergistic Multifunctional Electrocatalysis of N-Doped Graphene/WS 2 Heterostructure with Single-Atom Catalysts for Water Splitting and Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64916-64928. [PMID: 39531226 DOI: 10.1021/acsami.4c16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
As the demand for sustainable energy continues to rise, electrocatalysis has become increasingly prominent in the advancement of clean energy technologies. By scrutinizing the material to function as a multifunctional catalyst, the effectiveness of energy conversion processes is significantly enhanced. This study focuses on harnessing graphene/WS2 van der Waals heterostructures for overall water splitting and fuel cell applications, using transition metals (TMs) from Sc-Zn as single-atom catalysts (SACs). Additionally, the research explores the synergistic effect of nitrogen doping combined with SACs to modify the material into multifunctional catalysts. The stability of all TMs as SACs in the vdW heterostructure (TM@GW) and nitrogen-doped TM@GW (TM@NGW) is validated with negative cohesive and formation energies, and thermodynamic stability is also corroborated with ab initio molecular dynamics (AIMD) analysis at both 300 and 500 K for 5 ps. The observed electrocatalytic performance of TM@GW and TM@NGW depicts that the Ni@NGW system exhibits trifunctional property with the lowest overpotentials {ηHER; ηOER; ηORR = 0.21; 0.42; 0.27 V}. Additionally, the Cr@NGW material displays bifunctional catalytic activity for the OER and ORR, with overpotentials of 0.53 and 0.37 V, respectively. The synergistic effect between N doping and SACs is further studied with the d, p band centers and density of states calculations. Furthermore, the scaling relation between the adsorption of intermediates and reaction kinetics is studied, which validates the coaction of N and SACs in the TM@NGW heterostructure. This study demonstrates that the inclusion of SACs and nitrogen atoms in the GW heterostructure significantly enhances the catalytic performance by approximately 26%, effectively transforming the system into a multifunctional catalyst. These findings emphasize the role of SACs in vdW heterostructures and N doping effects, providing valuable insights to guide the design of advanced catalysts for water splitting and fuel cell applications.
Collapse
Affiliation(s)
- Deepak Arumugam
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Divyakaaviri Subramani
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Akilesh Muralidharan
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Shankar Ramasamy
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| |
Collapse
|
2
|
Das A, Roy D, Das A, Pathak B. Machine Learning-Enhanced Screening of Single-Atom Alloy Clusters for Nitrogen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58648-58656. [PMID: 39413428 DOI: 10.1021/acsami.4c12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The electrochemical nitrogen reduction reaction (eNRR) under ambient conditions is a promising method to generate ammonia (NH3), a crucial precursor for fertilizers and chemicals, without carbon emissions. Single-atom alloy catalysts (SAACs) have reinvigorated catalytic processes due to their high activity, selectivity, and efficient use of active atoms. Here, we employed density functional theory (DFT) calculations integrated with machine learning (ML) to investigate dodecahedral nanocluster-based SAACs for analyzing structure-activity relationships in eNRR. Over 300 nanocluster-based SAACs were screened with all the transition metals as dopants to develop an ML model predicting stability and catalytic performance. Facet sites were identified as optimal doping positions, particularly with late group transition metals showing superior stability and activity. Utilizing DFT+ML, we identified 8 highly suitable SAACs for eNRR. Interestingly, the number of valence d-electrons in dopants proved crucial in screening for eNRR activity. These catalysts exhibited low activity in hydrogen evolution reaction, further enhancing their suitability for eNRR. This successful ML-driven approach accelerates catalyst design and discovery, holding significant practical implications.
Collapse
Affiliation(s)
- Arunendu Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Diptendu Roy
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Amitabha Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
3
|
Min A, Park J, Begildayeva T, Theerthagiri J, Arumugam D, Moon CJ, Ramasamy S, Choi MY. Intraphase Switching of Hollow CoCuFe Nanocubes for Efficient Electrochemical Nitrite Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53718-53728. [PMID: 39172068 DOI: 10.1021/acsami.4c09663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study addresses the urgent need to focus on the nitrite reduction reaction (NO2-RR) to ammonia (NH3). A ternary-metal Prussian blue analogue (CoCuFe-PBA) was utilized as the template material, leveraging its tunable electronic properties to synthesize CoCuFe oxide (CoCuFe-O) through controlled calcination. Subsequently, a CoCuFe alloy (CoCuFe-A) was obtained via pulsed laser irradiation in liquids. The electrochemical properties of CoCuFe-O, derived from the PBA crystal structure, demonstrated a high yield of NH4+ at a rate of 555.84 μmol h-1 cm-2, with the highest Faradaic efficiency of 91.8% and a selectivity of 97.3% during a 1-h NO2-RR under an optimized potential of -1.0 V vs. Ag/AgCl. In situ Raman spectroscopy revealed the collaborative role of redox pairs (Co3+/Co2+ and Fe3+/Fe2+) as proton (H+) suppliers, with Cu centers serving as NO2- binders, thereby enhancing the reaction rate. Additionally, theoretical studies confirmed that Fe and Co atoms are more reactive than Cu toward intermediates playing crucial roles in hydrogenation, while Cu primarily activates NO owing to hydrogenation by the Fe and Co atoms and a high kinetic barrier in H2O* adsorption. This comprehensive investigation provides valuable insights into the electrochemical NO2-RR, establishing a foundation for efficient and sustainable NH3 synthesis strategies.
Collapse
Affiliation(s)
- Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jueun Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Deepak Arumugam
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Shankar Ramasamy
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Ma L, Chen X, Huang Y, Zhang P, Xiao B. Density Functional Theory Investigation on the Nitrogen Reduction Mechanism in Two-Dimensional Transition-Metal Boride with Ordered Metal Vacancies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14355-14367. [PMID: 38961770 DOI: 10.1021/acs.langmuir.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The creation of ordered collective vacancies in experiment proves challenging within a two-dimensional lattice, resulting in a limited understanding of their impact on catalyst performance. Motivated by the successful experimental synthesis of monolayer molybdenum borides with precisely ordered metal vacancies [Zhou et al. Science 2021, 373, 801-805] through dealloying, the nitrogen reduction reaction (NRR) in monolayer borides was systematically investigated to elucidate the influence of such ordered metal vacancies on catalytic reactions and the underlying mechanisms. The results reveal that the N-containing intermediates tend to dissociate, facilitating the NRR process with reduced UL. The emergence of ordered metal vacancies modulates the electronic properties of the catalyst and partially facilitates the decomposition of N-containing intermediates. However, the UL for NRR in Mo4/3B2 and W4/3B2 exhibits a significant increase. The compromised electrochemical performance is explained through the development of a simple electronic descriptor of the d-p band center (ΔdM-pB). Among these materials, Mo4/3Sc2/3B2 exhibits the most superior catalytic activity with a UL of -0.5 V and favorable NRR selectivity over the HER. Our results provide mechanistic insights into the role of ordered metal vacancies in transition-metal boride for the NRR and highlight a novel avenue toward the rational design of superior NRR catalysts.
Collapse
Affiliation(s)
- Linghuan Ma
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xianfei Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Peicong Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
5
|
Pan L, Kang X, Gao S, Duan X. Design of Single-Atom Catalysts on C 5N 2 for Nitrogen Fixation at Ambient Conditions: A First-Principles Study. Chemistry 2024:e202401675. [PMID: 38842477 DOI: 10.1002/chem.202401675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Single atom catalysts (SACs) exhibit the flexible coordination structure of the active site and high utilization of active atoms, making them promising candidates for nitrogen reduction reaction (NRR) under ambient conditions. By the aid of first-principles calculations based on DFT, we have systematically explored the NRR catalytic behavior of thirteen 4d- and 5d-transition metal atoms anchored on 2D porous graphite carbon nitride C5 ${_5 }$ N2 ${_2 }$ . With high selectivity and outstanding activity, Zr, Nb, Mo, Ta, W and Re-doped C5 ${_5 }$ N2 ${_2 }$ are identified as potential nominees for NRR. Particularly, Mo@C5 ${_5 }$ N2 ${_2 }$ possesses an impressive low limiting potential of -0.39 V (corresponding to a very low temperature and atmospheric pressure), featuring the potential determining step involving *N-N transitions to *N-NH via the distal path. The catalytic performance of TM@C5 ${_5 }$ N2 ${_2 }$ can be well characterized by the adsorption strength of intermediate *N2 ${_2 }$ H. Moreover, there exists a volcanic relationship between the catalytic property UL ${_{\rm{L}} }$ and the structure descriptor Ψ ${{{\Psi }}}$ , which validates the robustness and universality of Ψ ${{{\Psi }}}$ , combined with our previous study. This work sheds light on the design of SACs with eminent NRR performance.
Collapse
Affiliation(s)
- Liying Pan
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Xuxin Kang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Shan Gao
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- Laboratory of Clean Energy Storage and Conversion, Ningbo, 315211, China
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- Laboratory of Clean Energy Storage and Conversion, Ningbo, 315211, China
| |
Collapse
|
6
|
Sun Y, Shi W, Huang A, Sun M, Tu R, Li Z, Wang Z. Structural Design of π-d Conjugated TM x B 3 N 3 S 6 (x=2, 3) Monolayer Toward Electrocatalytic Ammonia Synthesis. CHEMSUSCHEM 2024; 17:e202301021. [PMID: 37701969 DOI: 10.1002/cssc.202301021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted wide attention to be acted as potential electrocatalysts for nitrogen reduction reaction (NRR). However, the coordination environment of the single transition metal (TM) atoms is essential to the catalytic activity for NRR. Herein, we proposed four types of 3-, 4-coordinated and π-d conjugated TMx B3 N3 S6 (x=2, 3, TM=Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Tc, Ru, Hf, Ta, W, Re and Os) monolayers for SACs. Based on density functional theory (DFT) calculations, I-TM2 B3 N3 S6 and III-TM3 B3 N3 S6 are the reasonable 3-coordinated and 4-coordinated structures screening by structure stable optimizations, respectively. Next, the structural configurations, electronic properties and catalytic performances of 30 kinds of the 3-coordinated I-TM2 B3 N3 S6 and 4-coordinated III-TM3 B3 N3 S6 monolayers with different single transition metal atoms were systematically investigated. The results reveal that B3 N3 S6 ligand is an ideal support for TM atoms due to existence of strong TM-S bonds. The 3-coordinated I-V2 B3 N3 S6 is the best SAC with the low limiting potential (UL ) of -0.01 V, excellent stability (Ef =-0.32 eV, Udiss =0.02 V) and remarkable selectivity characteristics. This work not only provides novel π-d conjugated SACs, but also gives theoretical insights into their catalytic activities and offers reference for experimental synthesis.
Collapse
Affiliation(s)
- Yongxiu Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Wenwu Shi
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, P. R. China
| | - Aijian Huang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Renyong Tu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhiguo Wang
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
7
|
Hu W, Zhang L. First-principles, machine learning and symbolic regression modelling for organic molecule adsorption on two-dimensional CaO surface. J Mol Graph Model 2023; 124:108530. [PMID: 37321063 DOI: 10.1016/j.jmgm.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Data-driven methods are receiving significant attention in recent years for chemical and materials researches; however, more works should be done to leverage the new paradigm to model and analyze the adsorption of the organic molecules on low-dimensional surfaces beyond using the traditional simulation methods. In this manuscript, we employ machine learning and symbolic regression method coupled with DFT calculations to investigate the adsorption of atmospheric organic molecules on a low-dimensional metal oxide mineral system. The starting dataset consisting of the atomic structures of the organic/metal oxide interfaces are obtained via the density functional theory (DFT) calculation and different machine learning algorithms are compared, with the random forest algorithm achieving high accuracies for the target output. The feature ranking step identifies that the polarizability and bond type of the organic adsorbates are the key descriptors for the adsorption energy output. In addition, the symbolic regression coupled with genetic programming automatically identifies a series of hybrid new descriptors displaying improved relevance with the target output, suggesting the viability of symbolic regression to complement the traditional machine learning techniques for the descriptor design and fast modeling purposes. This manuscript provides a framework for effectively modeling and analyzing the adsorption of the organic molecules on low-dimensional surfaces via comprehensive data-driven approaches.
Collapse
Affiliation(s)
- Wenguang Hu
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Lei Zhang
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044, Nanjing, China.
| |
Collapse
|
8
|
Hamsa AP, Arulprakasam M, Unni SM. Electrochemical nitrogen fixation on single metal atom catalysts. Chem Commun (Camb) 2023; 59:10689-10710. [PMID: 37584339 DOI: 10.1039/d3cc02229c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The electrochemical reduction of nitrogen (eNRR) offers a promising alternative to the Haber-Bosch (H-B) process for producing ammonia under moderate conditions. However, the inertness of dinitrogen and the competing hydrogen evolution reaction pose significant challenges for eNRR. Thus, developing more efficient electrocatalysts requires a deeper understanding of the underlying mechanistic reactions and electrocatalytic activity. Single atom catalysts, which offer tunable catalytic properties and increased selectivity, have emerged as a promising avenue for eNRR. Carbon and metal-based substrates have proven effective for dispersing highly active single atoms that can enhance eNRR activity. In this review, we explore the use of atomically dispersed single atoms on different substrates for eNRR from both conceptual and experimental perspectives. The review is divided into four sections: the first section describes eNRR mechanistic pathways, the second section focuses on single metal atom catalysts (SMACs) with metal atoms dispersed on carbon substrates for eNRR, the third section covers SMACs with metal atoms dispersed on non-carbon substrates for eNRR, and the final section summarizes the remaining challenges and future scope of eNRR for green ammonia production.
Collapse
Affiliation(s)
- Ashida P Hamsa
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muraliraj Arulprakasam
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Ma R, Weng X, Lin L, Zhao J, Wei F, Lin S. Role of Peripheral Coordination Boron in Electrocatalytic Nitrogen Reduction over N-Doped Graphene-Supported Single-Atom Catalysts. Molecules 2023; 28:4597. [PMID: 37375152 DOI: 10.3390/molecules28124597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we investigate the effect of peripheral B doping on the electrocatalytic nitrogen reduction reaction (NRR) performance of N-doped graphene-supported single-metal atoms using density functional theory (DFT) calculations. Our results showed that the peripheral coordination of B atoms could improve the stability of the single-atom catalysts (SACs) and weaken the binding of nitrogen to the central atom. Interestingly, it was found that there was a linear correlation between the change in the magnetic moment (μ) of single-metal atoms and the change in the limiting potential (UL) of the optimum NRR pathway before and after B doping. It was also found that the introduction of the B atom suppressed the hydrogen evolution reaction, thereby enhancing the NRR selectivity of the SACs. This work provides useful insights into the design of efficient SACs for electrocatalytic NRR.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xintong Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Linghui Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jia Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Fenfei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
10
|
Huang X, Wang J, Zhao C, Gan LY, Xu H. NiO Matrix Decorated by Ru Single Atoms: Electron-Rich Ru-Induced High Activity and Selectivity toward Electrochemical N 2 Reduction. J Phys Chem Lett 2023; 14:3785-3793. [PMID: 37052489 DOI: 10.1021/acs.jpclett.3c00372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Developing a single-atom catalyst with electron-rich active sites is a promising strategy for catalyzing the electrochemical N2 reduction reaction (NRR). Herein, we choose NiO(001) as a model template and deposit a series of single transition metal (TM) atoms with higher formal charges to create the electron-rich active centers. Our first-principles calculations show that low-valent Ru (+2) on NiO(001) can significantly activate N2, with its oxidation states varying from +2 to +4 throughout the catalytic cycle. The Ru/NiO(001) catalyst exhibits the best activity with a relatively low limiting potential of -0.49 V. Furthermore, under NRR operating conditions, the Ru site is primarily occupied by *N2 rather than *H, indicating that NRR overwhelms the hydrogen evolution reaction and thus exhibits excellent selectivity. Our work highlights the potential of designing catalysts with electron-rich active sites for NRR.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiong Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Changming Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Yong Gan
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400030, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Lin X, Wang Y, Chang X, Zhen S, Zhao Z, Gong J. High‐Throughput Screening of Electrocatalysts for Nitrogen Reduction Reactions Accelerated by Interpretable Intrinsic Descriptor. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xiaoyun Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Yongtao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Shiyu Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
- National Industry-Education Platform of Energy Storage Tianjin University 135 Yaguan Road 300350 Tianjin China
- Joint School of National University of Singapore Tianjin University International Campus of Tianjin University Binhai New City 350207 Fuzhou China
| |
Collapse
|
12
|
Fang X, Yang X, Wang H. The transition metal doped B cluster (TM4B18) as catalysis for nitrogen fixation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
13
|
Liu YX, Zhang H, Cheng XL. Electrocatalytic nitrogen fixation performance of two-dimensional Metal-Organic Frameworks Cu3(C6O6) and TM/Cu3(C6O6) from first-principle study. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Das A, Panigrahi K, Howli P. Photoelectrochemistry-driven ambient Nitrogen reduction to Ammonia: Materials’ design insights. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Tursun M, Wu C. Single Transition Metal Atoms Anchored on Defective MoS 2 Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine. Inorg Chem 2022; 61:17448-17458. [DOI: 10.1021/acs.inorgchem.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mamutjan Tursun
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an710054, China
- College of Chemistry and Environmental Science, Kashgar University, Kashgar844000, Xinjiang, China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an710054, China
| |
Collapse
|