1
|
Xiao H, Wang J, Tan H, Gan Y, Liu W, Zhang Y, Zhang Z, Yang J. Robust Heteronuclear Correlations for Sub-milligram Protein in Ultrafast Magic-Angle Spinning Solid-State NMR. J Am Chem Soc 2025; 147:6384-6389. [PMID: 39953646 DOI: 10.1021/jacs.5c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Proton-detected solid-state nuclear magnetic resonance (ssNMR) under ultrafast magic-angle spinning (MAS) has become a powerful tool for elucidating the structures of proteins with sub-milligram quantities, where establishing 13C-15N correlations is essential. However, traditional 13C-15N cross-polarization (CP), effective at lower MAS frequencies, suffers diminished efficiency under ultrafast MAS conditions. To overcome this limitation, we developed a robust method for selective polarization between insensitive nuclei (SPINE). This approach significantly enhances the heteronuclear 13C-15N correlation efficiency over CP, with gain factors of 1.75 for 13CA-15N and 1.9 and 13CO-15N transfers. SPINE's efficacy was validated on four diverse proteins: the microcrystalline β1 immunoglobulin binding domain of protein G (GB1), the large-conductance mechanosensitive ion channel from Methanosarcina acetivorans (MaMscL), fibrillar septum-forming protein (SepF), and the vertex protein of the β-carboxysome shell (CcmL). This enhancement can reduce the duration of current multidimensional experiments to about one-third of that using a single 13C-15N CP and to about one-tenth with dual 13C-15N transfers. Our findings underscore the practical utility and versatility of SPINE in ssNMR spectroscopy, making it a valuable approach for advancing structural biology studies of sub-milligram protein.
Collapse
Affiliation(s)
- Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yuefang Gan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
2
|
Han B, Yang J, Zhang Z. Selective Methods Promote Protein Solid-State NMR. J Phys Chem Lett 2024; 15:11300-11311. [PMID: 39495892 DOI: 10.1021/acs.jpclett.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is indispensable for studying the structures, dynamics, and interactions of insoluble proteins in native or native-like environments. While ssNMR includes numerous nonselective techniques for general analysis, it also provides various selective methods that allow for the extraction of precise details about proteins. This perspective highlights three key aspects of selective methods: selective signals of protein segments, selective recoupling, and site-specific insights into proteins. These methods leverage protein topology, labeling strategies, and the tailored manipulation of spin interactions through radio frequency (RF) pulses, significantly promoting the field of protein ssNMR. With ongoing advancements in higher magnetic fields and faster magic angle spinning (MAS), there remains an ongoing need to enhance the selectivity and efficiency of selective ssNMR methods, facilitating deeper atomic-level insights into complex biological systems.
Collapse
Affiliation(s)
- Bin Han
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Pujahari SR, Purusottam RN, Mali PS, Sarkar S, Khaneja N, Vajpai N, Kumar A. Exploring the Higher Order Structure and Conformational Transitions in Insulin Microcrystalline Biopharmaceuticals by Proton-Detected Solid-State Nuclear Magnetic Resonance at Natural Abundance. Anal Chem 2024; 96:4756-4763. [PMID: 38326990 DOI: 10.1021/acs.analchem.3c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The integrity of a higher order structure (HOS) is an essential requirement to ensure the efficacy, stability, and safety of protein therapeutics. Solution-state nuclear magnetic resonance (NMR) occupies a unique niche as one of the most promising methods to access atomic-level structural information on soluble biopharmaceutical formulations. Another major class of drugs is poorly soluble, such as microcrystalline suspensions, which poses significant challenges for the characterization of the active ingredient in its native state. Here, we have demonstrated a solid-state NMR method for HOS characterization of biopharmaceutical suspensions employing a selective excitation scheme under fast magic angle spinning (MAS). The applicability of the method is shown on commercial insulin suspensions at natural isotopic abundance. Selective excitation aided with proton detection and non-uniform sampling (NUS) provides improved sensitivity and resolution. The enhanced resolution enabled us to demonstrate the first experimental evidence of a phenol-escaping pathway in insulin, leading to conformational transitions to different hexameric states. This approach has the potential to serve as a valuable means for meticulously examining microcrystalline biopharmaceutical suspensions, which was previously not attainable in their native formulation states and can be seamlessly extended to other classes of biopharmaceuticals such as mAbs and other microcrystalline proteins.
Collapse
Affiliation(s)
- Soumya Ranjan Pujahari
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Sambeda Sarkar
- System and Control Engineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Navin Khaneja
- System and Control Engineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Navratna Vajpai
- Biocon Biologics Limited, Biocon SEZ, Plot No. 2 & 3, Phase IV-B.I.A, Bommasandra-Jigani Link Road, Bangalore 560099, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| |
Collapse
|
4
|
Du Y, Frank D, Chen Z, Struppe J, Su Y. Ultrafast magic angle spinning NMR characterization of pharmaceutical solid polymorphism: A posaconazole example. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107352. [PMID: 36535214 DOI: 10.1016/j.jmr.2022.107352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Protons represent the most NMR-sensitive nucleus in pharmaceutical compounds. Therefore, proton-detected solid-state NMR techniques under fast magic angle spinning are among the few solutions to overcome the challenge of low sensitivity to analyze natural abundant drug substances and products. In this study, we report the structural characterization of crystal polymorphs of a commercial drug molecule, posaconazole, with a relatively large molecular weight of 700.8 g·mol-1 and at the natural abundance. The enhanced sensitivity and resolution at 100 kHz MAS enables the exploration of the distinct intermolecular packing in posaconazole forms I, III, and γ. These results demonstrate that proton-detected homo- and heteronuclear correlation methods can probe the structural details of pharmaceutical polymorphism.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
| | - Derek Frank
- Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
| | - Zhenxuan Chen
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
| | | | - Yongchao Su
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA.
| |
Collapse
|