1
|
Agarwal V, Raran-Kurussi S, Nishiyama Y. Spin-dynamics and efficiency of single 14N- 1H cross-polarization at fast magic angle spinning in solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2025; 136:101992. [PMID: 39923295 DOI: 10.1016/j.ssnmr.2025.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The naturally abundant 14N isotope (>99 %) is sparingly employed for characterization in solid-state nuclear magnetic resonance (NMR) despite the importance of nitrogen atoms in shaping molecular structures and properties. This inhibition can be attributed to large quadrupolar couplings (∼several MHz), resulting in more involved spin methodologies for 14N nuclei. Experimentally, spin-½ nuclei are utilized for excitation and detection through two-way (1H→14N→1H) polarization transfer between spin-½ nuclei and 14N. Herein, we show direct 14N spin excitation followed by 14N→1H cross-polarization (CP) is an efficient method for polarization transfer even for 14N spins with a large quadrupolar coupling constant (3-4 MHz). This contrasts previous studies, which indicate that 1H-14N spectra can only be observed with a pair of at least a rotor period-long symmetric 14N pulses (J. Chem. Phys. 151 (2019) 154202). The 14N→1H CP spin dynamics have been experimentally established and can be explained in analogy to spin-½ Hartmann-Hahn CP if visualized in the quadrupolar jolting frame. The 14N→1H CP is ∼1.9-2.7 times more efficient in polarization transfer than other 14N edited experiments. Considering shorter 14N T1 relaxation times compared to protons, 14N edited spectra were recorded using 14N→1H CP, resulting in enhanced sensitivity per unit of time.
Collapse
Affiliation(s)
- Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad, 500 046, India.
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad, 500 046, India
| | | |
Collapse
|
2
|
Vugmeyster L, Fu R, Ostrovsky D. 17O NMR relaxation measurements for investigation of molecular dynamics in static solids using sodium nitrate as a model compound. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101976. [PMID: 39581174 PMCID: PMC11625602 DOI: 10.1016/j.ssnmr.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
17O NMR methods are emerging as a powerful tool for determination of structure and dynamics in materials and biological solids. We present experimental and theoretical frameworks for measurements of 17O NMR relaxation times in static solids focusing on the excitation of the central transition of the 17O spin 5/2 system. We employ 17O-enriched NaNO3 as a model compound, in which the nitrate oxygen atoms undergo 3-fold jumps. Rotating frame (T1ρ), transverse (T2) and longitudinal (T1) relaxation times as well as line shapes were measured for the central transition in the 280 to 195 K temperature range at 14.1 and 18.8 T field strengths. We conduct experimental and theoretical comparison between different relaxation methods and demonstrate the advantage of combining data from multiple relaxation time and line shape measurements to obtain a more accurate determination of the dynamics as compared to either of the techniques alone. The computational framework for relaxation of spin 5/2 nuclei is developed using the numerical integration of the Liouville - von Neumann equation.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80204, USA.
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO, 80204, USA
| |
Collapse
|
3
|
Koscielniak J, Li J, Sail D, Swenson R, Anklin C, Rozovsky S, Byrd RA. Exploring Sulfur Sites in Proteins via Triple-Resonance 1H-Detected 77Se NMR. J Am Chem Soc 2023; 145. [PMID: 37906952 PMCID: PMC10655107 DOI: 10.1021/jacs.3c07225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
NMR spectroscopy has been applied to virtually all sites within proteins and biomolecules; however, the observation of sulfur sites remains very challenging. Recent studies have examined 77Se as a replacement for sulfur and applied 77Se NMR in both the solution and solid states. As a spin-1/2 nuclide, 77Se is attractive as a probe of sulfur sites, and it has a very large chemical shift range (due to a large chemical shift anisotropy), which makes it potentially very sensitive to structural and/or binding interactions as well as dynamics. Despite being a spin-1/2 nuclide, there have been rather limited studies of 77Se, and the ability to use 1H-indirect detection has been sparse. Some examples exist, but in the absence of a directly bonded, nonexchangeable 1H, these have been largely limited to smaller molecules. We develop and illustrate approaches using double-labeling of 13C and 77Se in proteins that enable more sensitive triple-resonance schemes via multistep coherence transfers and 1H-detection. These methods require specialized hardware and decoupling schemes, which we developed and will be discussed.
Collapse
Affiliation(s)
- Janusz Koscielniak
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Jess Li
- Center
for Structural Biology, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Deepak Sail
- Chemistry
and Synthesis Center, National Heart Lung
and Blood Institute, Bethesda, Maryland 20814, United States
| | - Rolf Swenson
- Chemistry
and Synthesis Center, National Heart Lung
and Blood Institute, Bethesda, Maryland 20814, United States
| | - Clemens Anklin
- Bruker
BioSpin Corp., Billerica, Massachusetts 01821, United States
| | - Sharon Rozovsky
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - R. Andrew Byrd
- Center
for Structural Biology, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
4
|
Sasaki A, Trébosc J, Nagashima H, Amoureux JP. On the applicability of cosine-modulated pulses for high-resolution solid-state NMR of quadrupolar nuclei with spin > 3/2. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101863. [PMID: 37060799 DOI: 10.1016/j.ssnmr.2023.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
In MQMAS-based high-resolution solid-state NMR experiments of half-integer spin quadrupolar nuclei, the high radiofrequency (RF) field requirement for the MQ excitation and conversion steps with two hard-pulses is often a sensitivity limiting factor in many practical applications. Recently, the use of two cosine-modulated (cos) low-power (lp) pulses, lasting one-rotor period each, was successfully introduced for efficient MQ excitation and conversion of spin-3/2 nuclei with a reduced RF amplitude. In this study, we extend our previous investigations of spin-3/2 nuclei to systems with higher spin values and discuss the applicability of coslp-MQ excitation and conversion in MQMAS and MQ-HETCOR experiments under slow and fast spinning conditions. For the numerical simulations and experiments we used a moderate magnetic field of 14.1 T. Two spin-5/2 nuclei (85Rb and 27Al) are mainly employed with a large variety of CQ values, but we show that the practical set up is also available for higher spin values, such as spin-9/2 with 93Nb in Cs4Nb11O30. We demonstrate for nuclei with spin value larger than 3/2 a preferential use of coslp-MQ acquisition for low-gamma nuclei and/or large CQ values with a much reduced RF-field with respect to that of hard-pulses used with conventional methods.
Collapse
Affiliation(s)
- Akiko Sasaki
- Bruker Japan K.K, 3-9, Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000, Lille, France
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Jean-Paul Amoureux
- Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000, Lille, France.
| |
Collapse
|
5
|
Hung I, Mao W, Keeler EG, Griffin RG, Gor'kov PL, Gan Z. Characterization of peptide O⋯HN hydrogen bonds via1H-detected 15N/ 17O solid-state NMR spectroscopy. Chem Commun (Camb) 2023; 59:3111-3113. [PMID: 36804656 PMCID: PMC10004979 DOI: 10.1039/d2cc07004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
High sensitivity and resolution solid-state NMR methods are reported, that straightforwardly select hydrogen-bonded 15N-17O pairs from amongst all other nitrogen and oxygen sites in peptides, to aid protein secondary and tertiary structure determination. Significantly improved sensitivity is obtained with indirect 1H detection under fast MAS and stronger relayed dipole couplings.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida, 32310, USA.
| | - Wenping Mao
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida, 32310, USA.
| | - Eric G Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida, 32310, USA.
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida, 32310, USA.
| |
Collapse
|
6
|
Špačková J, Goldberga I, Yadav R, Cazals G, Lebrun A, Verdié P, Métro TX, Laurencin D. Fast and Cost-Efficient 17 O-Isotopic Labeling of Carboxylic Groups in Biomolecules: From Free Amino Acids to Peptide Chains. Chemistry 2023; 29:e202203014. [PMID: 36333272 DOI: 10.1002/chem.202203014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022]
Abstract
17 O NMR spectroscopy is a powerful technique, which can provide unique information regarding the structure and reactivity of biomolecules. However, the low natural abundance of 17 O (0.04 %) generally requires working with enriched samples, which are not easily accessible. Here, we present simple, fast and cost-efficient 17 O-enrichment strategies for amino acids and peptides by using mechanochemistry. First, five unprotected amino acids were enriched under ambient conditions, consuming only microliter amounts of costly labeled water, and producing pure molecules with enrichment levels up to ∼40 %, yields ∼60-85 %, and no loss of optical purity. Subsequently, 17 O-enriched Fmoc/tBu-protected amino acids were produced on a 1 g/day scale with high enrichment levels. Lastly, a site-selective 17 O-labeling of carboxylic functions in peptide side-chains was achieved for RGD and GRGDS peptides, with ∼28 % enrichment level. For all molecules, 17 O ssNMR spectra were recorded at 14.1 T in reasonable times, making this an important step forward for future NMR studies of biomolecules.
Collapse
Affiliation(s)
| | | | - Rishit Yadav
- ICGM, CNRS, UM, ENSCM, 34293, Montpellier, France
| | | | | | | | | | | |
Collapse
|
7
|
McCalpin SD, Fu R, Ravula T, Wu G, Ramamoorthy A. Magnetically aligned nanodiscs enable direct measurement of 17O residual quadrupolar coupling for small molecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107341. [PMID: 36473327 PMCID: PMC11585078 DOI: 10.1016/j.jmr.2022.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The use of 17O in NMR spectroscopy for structural studies has been limited due to its low natural abundance, low gyromagnetic ratio, and quadrupolar relaxation. Previous solution 17O work has primarily focused on studies of liquids where the 17O quadrupolar coupling is averaged to zero by isotropic molecular tumbling, and therefore has ignored the structural information contained in this parameter. Here, we use magnetically aligned polymer nanodiscs as an alignment medium to measure residual quadrupolar couplings (RQCs) for 17O-labelled benzoic acid in the aqueous phase. We show that increasing the magnetic field strength improves spectral sensitivity and resolution and that each satellite peak of the expected pentet pattern resolves clearly at 18.8 T. We observed no significant dependence of the RQC magnitudes on the magnetic field strength. However, changing the orientation of the alignment medium alters the RQC by a consistent factor, suggesting that 17O RQCs measured in this way can provide reliable orientational information for elucidations of molecular structures.
Collapse
Affiliation(s)
- Samuel D McCalpin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Thirupathi Ravula
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Sasaki A, Trébosc J, Nagashima H, Amoureux JP. Practical considerations on the use of low RF-fields and cosine modulation in high-resolution NMR of I = 3/2 spin quadrupolar nuclei in solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107324. [PMID: 36370548 DOI: 10.1016/j.jmr.2022.107324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Despite its ease in experimental set up, the low sensitivity of MQMAS experiments is often a limiting factor in many practical applications. This is mainly due to the large radiofrequency (RF) field requirement of the two short hard-pulses often used for the optimum MQ excitation and conversion steps. Very recently, two novel MQMAS experiments have been proposed for I = 3/2 nuclei, namely lp-MQMAS and coslp-MQMAS, enabling an efficient MQ excitation/conversion with a reduced RF requirement, by utilizing two long pulses lasting one rotor period each, with or without cosine modulation. In this study, we focus on the practical considerations of these new methods and discuss their pros and cons to elucidate their appropriate use under both moderate and fast spinning conditions. Using four I = 3/2 (87Rb, 71Ga, 35Cl and 23Na) nuclei at a moderate magnetic field (B0 = 14.1 T), we show the superior use of these experiments, especially for samples with large CQ values and/or low-gamma nuclei. Compared to all other existing sequences, the coslp-MQMAS method with initial WURST signal enhancement is the most robust, efficient and resolved high-resolution 2D method for spin 3/2 nuclei. Furthermore, using {23Na}-1H spin systems, we demonstrate the sensitivity advantage of the WURST coslp-MQ-HETCOR acquisition upon 1H detection and fast MAS conditions.
Collapse
Affiliation(s)
- Akiko Sasaki
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Bruker Japan K.K., 3-9, Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa 221-0022, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jean-Paul Amoureux
- Bruker Biospin, 34 rue de l'industrie, F-67166 Wissembourg, France; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| |
Collapse
|