1
|
Hoeher JE, Sande NE, Widom JR. Probing and perturbing riboswitch folding using a fluorescent base analogue. Photochem Photobiol 2024; 100:419-433. [PMID: 38098287 PMCID: PMC10950518 DOI: 10.1111/php.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 03/20/2024]
Abstract
Riboswitches are mRNA segments that regulate gene expression in response to ligand binding. The Class I preQ1 riboswitch consists of a stem-loop and an adenine-rich single-stranded tail ("L3"), which adopt a pseudoknot structure upon binding of the ligand preQ1 . We inserted 2-aminopurine (2-AP), a fluorescent analogue of adenine (A), into the riboswitch at six different positions within L3. Here, 2-AP functions both as a spectroscopic probe and as a "mutation" that reveals how alteration of specific A residues impacts the riboswitch. Using fluorescence and circular dichroism spectroscopy, we found that 2-AP decreases the affinity of the riboswitch for preQ1 at all labeling positions tested, although modified and unmodified variants undergo the same global conformational changes at sufficiently high preQ1 concentration. 2-AP substitution is most detrimental to ligand binding at sites proximal to the ligand-binding pocket, while distal labeling sites exhibit the largest impacts on the stability of the L3 domain in the absence of ligand. Insertion of multiple 2-AP residues does not induce significant additional disruptions. Our results show that interactions involving the A residues in L3 play a critical role in ligand recognition by the preQ1 riboswitch and that 2-AP substitution exerts complex and varied impacts on this riboswitch.
Collapse
Affiliation(s)
- Janson E. Hoeher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| | - Natalie E. Sande
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| | - Julia R. Widom
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| |
Collapse
|
2
|
Díaz SA, Pascual G, Patten LK, Roy SK, Meares A, Chiriboga M, Susumu K, Knowlton WB, Cunningham PD, Mathur D, Yurke B, Medintz IL, Lee J, Melinger JS. Towards control of excitonic coupling in DNA-templated Cy5 aggregates: the principal role of chemical substituent hydrophobicity and steric interactions. NANOSCALE 2023; 15:3284-3299. [PMID: 36723027 PMCID: PMC9932853 DOI: 10.1039/d2nr05544a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.
Collapse
Affiliation(s)
- Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Gissela Pascual
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Adam Meares
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Matthew Chiriboga
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
- Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC, USA
- Jacobs Corporation, Hanover, MD, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Paul D Cunningham
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA.
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA.
| |
Collapse
|