1
|
Liu HY, Mei KJ, Borrelli WR, Schwartz BJ. Simulating the Competitive Ion Pairing of Hydrated Electrons with Chaotropic Cations. J Phys Chem B 2024; 128:8557-8566. [PMID: 39178349 PMCID: PMC11382261 DOI: 10.1021/acs.jpcb.4c04290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Experiments show that the absorption spectrum of the hydrated electron (ehyd-) blue-shifts in electrolyte solutions compared with what is seen in pure water. This shift has been assigned to the ehyd-'s competitive ion-pairing interactions with the salt cation relative to the salt anion based on the ions' positions on the Hofmeister series. Remarkably, little work has been done investigating the ehyd-'s behavior when the salts have chaotropic cations, which should greatly change the ion-pairing interactions given that the ehyd- is a champion chaotrope. In this work, we remedy this by using mixed quantum/classical simulations to analyze the behavior of two different models of the ehyd- in aqueous RbF and RbI electrolyte solutions as a function of salt concentration. We find that the magnitude of the salt-induced spectral blue-shift is determined by a combination of the number of chaotropic Rb+ cations near the ehyd- and the number of salt anions near those cations so that the spectrum of the ehyd- directly reflects its local environment. We also find that the use of a soft-cavity ehyd- model predicts stronger competitive interactions with Rb+ relative to I- than a more traditional hard cavity model, leading to different predicted spectral shifts that should provide a way to distinguish between the two models experimentally. Our simulations predict that at the same concentration, salts with chaotropic cations should produce larger spectral blue-shifts than salts with kosmotropic cations. We also found that at high salt concentrations with chaotropic cations, the predicted blue-shift is greater when the salt anion is kosmotropic instead of chaotropic. Our goal is for this work to inspire experimentalists to make such measurements, which will help provide a spectroscopic means to distinguish between simulations models that predict different hydration structures for the ehyd-.
Collapse
Affiliation(s)
- Hannah Y Liu
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kenneth J Mei
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - William R Borrelli
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
2
|
Majid A, Raza NZ, Haider S, Alam K, Naeem S. Electronic Transport Properties of Molecular Clusters Sb 4O 6, P 4Se 3, and P 4O 6. J Phys Chem A 2024; 128:4814-4822. [PMID: 38857364 DOI: 10.1021/acs.jpca.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Inorganic molecular crystal (IMC) is a trending class of materials in which structural units comprise molecular cages or clusters bonded via van der Waal forces. The structure-property relationship in IMCs is less known due to the unusual assembly of molecular clusters in these materials. In this paper, the density functional theory-calculated electronic transport properties of the molecular clusters of antimony oxide (Sb4O6), phosphorus triselenide (P4Se3), and phosphorus trioxide (P4O6) are described in detail. The calculated values of highest occupied molecular orbital-lowest unoccupied molecular orbital gaps appeared as 5.487, 2.296, and 4.425 eV for Sb4O6, P4Se3, and P4O6, respectively. The work was carried out to explore the charge transport mechanism in IMCs in order to disclose their potential in practical applications. The calculations involved charge-transfer integral based on Marcus theory to compute the electronic coupling (V), reorganization energies (λ), and hopping rate (k) in the structures. The hopping rate for Sb4O6, P4Se3, and P4O6 is found as 8.49 × 10-12, 1.28 × 10-14, and 2.51 × 10-20 s-1, respectively. The transport properties of Sb4O6 are found better, which predicts the application of the relevant IMC for device grade applications. The findings of this study are important for future application of the IMCs in electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Physics, University of Gujrat, Gujrat 50700, Pakistan
| | - Nimra Zaib Raza
- Department of Physics, University of Gujrat, Gujrat 50700, Pakistan
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, Riyadh 11421, Saudi Arabia
| | - Kamran Alam
- Department of Chemical Engineering Materials Environment Sapienza, University of Rome, Roma RM 00185, Italy
| | - Samia Naeem
- Department of Physics, Government College Women University Sialkot, Sialkot 51310, Pakistan
| |
Collapse
|
3
|
Neupane P, Bartels DM, Thompson WH. Exploring the Unusual Reactivity of the Hydrated Electron with CO 2. J Phys Chem B 2024; 128:567-575. [PMID: 38184793 DOI: 10.1021/acs.jpcb.3c06935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Many questions remain about the reactions of the hydrated electron despite decades of study. Of particular note is that they do not appear to follow the Marcus theory of electron transfer reactions, a feature that is yet to be explained. To investigate these issues, we used ab initio molecular dynamics (AIMD) simulations to investigate one of the better studied reactions, the hydrated electron reduction of CO2. The rate constant for the hydrated electron-CO2 reaction complex to react to form CO2- is for the first time estimated from AIMD simulations. Results at 298 and 373 K show the rate constant is insensitive to temperature, consistent with the low measured activation energy for the reaction, and the implications of this behavior are examined. The sampling provided by the simulations yields insight into the reaction mechanism. The reaction is found to involve both solvent reorganization and changes in the carbon dioxide structure. The latter leads to significant vibrational excitation of the bending and symmetric stretch vibrations in the CO2- product, indicating the reaction is vibrationally nonadiabatic. The former is estimated from the calculation of an approximate collective solvent coordinate and the free energy in this coordinate is determined. These results indicate that AIMD simulations can reasonably estimate hydrated electron reaction activation energies and provide new insight into the mechanism that can help illuminate the features of this unusual chemistry.
Collapse
Affiliation(s)
- Pauf Neupane
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - David M Bartels
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Salerno KM, Domenico J, Le NQ, Balakrishnan K, McQuillen RJ, Stiles CD, Solov'yov IA, Martino CF. Long-Time Oxygen and Superoxide Localization in Arabidopsis thaliana Cryptochrome. J Chem Inf Model 2023; 63:6756-6767. [PMID: 37874902 DOI: 10.1021/acs.jcim.3c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cryptochromes are proteins that are highly conserved across species and in many instances bind the flavin adenine dinucleotide (FAD) cofactor within their photolyase-homology region (PHR) domain. The FAD cofactor has multiple redox states that help catalyze reactions, and absorbs photons at about 450 nm, a feature linked to the light-related functions of cryptochrome proteins. Reactive oxygen species (ROS) are produced from redox reactions involving molecular oxygen and are involved in a myriad of biological processes. Superoxide O2•- is an exemplary ROS that may be formed through electron transfer from FAD to O2, generating an electron radical pair. Although the formation of a superoxide-FAD radical pair has been speculated, it is still unclear if the required process steps could be realized in cryptochrome. Here, we present results from molecular dynamics (MD) simulations of oxygen interacting with the PHR domain of Arabidopsis thaliana cryptochrome 1 (AtCRY1). Using MD simulation trajectories, oxygen binding locations are characterized through both the O2-FAD intermolecular distance and the local protein environment. Oxygen unbinding times are characterized through replica simulations of the bound oxygen. Simulations reveal that oxygen molecules can localize at certain sites within the cryptochrome protein for tens of nanoseconds, and superoxide molecules can localize for significantly longer. This relatively long-duration molecule binding suggests the possibility of an electron-transfer reaction leading to superoxide formation. Estimates of electron-transfer rates using the Marcus theory are performed for the identified potential binding sites. Molecular oxygen binding results are compared with recent results demonstrating long-time oxygen binding within the electron-transfer flavoprotein (ETF), another FAD binding protein.
Collapse
Affiliation(s)
- K Michael Salerno
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Janna Domenico
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Nam Q Le
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Krithika Balakrishnan
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Ryan J McQuillen
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Christopher D Stiles
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Centre for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Centre for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
| | - Carlos F Martino
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| |
Collapse
|
5
|
Neupane P, Bartels DM, Thompson WH. Empirically Optimized One-Electron Pseudopotential for the Hydrated Electron: A Proof-of-Concept Study. J Phys Chem B 2023; 127:7361-7371. [PMID: 37556737 DOI: 10.1021/acs.jpcb.3c03540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Mixed quantum-classical molecular dynamics simulations have been important tools for studying the hydrated electron. They generally use a one-electron pseudopotential to describe the interactions of an electron with the water molecules. This approximation shows both the strength and weakness of the approach. On the one hand, it enables extensive statistical sampling and large system sizes that are not possible with more accurate ab initio molecular dynamics methods. On the other hand, there has (justifiably) been much debate about the ability of pseudopotentials to accurately and quantitatively describe the hydrated electron properties. These pseudopotentials have largely been derived by fitting them to ab initio calculations of an electron interacting with a single water molecule. In this paper, we present a proof-of-concept demonstration of an alternative approach in which the pseudopotential parameters are determined by optimizing them to reproduce key experimental properties. Specifically, we develop a new pseudopotential, using the existing TBOpt model as a starting point, which correctly describes the hydrated electron vertical detachment energy and radius of gyration. In addition to these properties, this empirically optimized model displays a significantly modified solvation structure, which improves, for example, the prediction of the partial molar volume.
Collapse
Affiliation(s)
- Pauf Neupane
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - David M Bartels
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Park SJ, Narvaez WA, Schwartz BJ. Ab Initio Studies of Hydrated Electron/Cation Contact Pairs: Hydrated Electrons Simulated with Density Functional Theory Are Too Kosmotropic. J Phys Chem Lett 2023; 14:559-566. [PMID: 36630724 DOI: 10.1021/acs.jpclett.2c03705] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We have performed the first DFT-based ab initio MD simulations of a hydrated electron (eaq-) in the presence of Na+, a system chosen because ion-pairing behavior in water depends sensitively on the local hydration structure. Experiments show that eaq-'s interact weakly with Na+; the eaq-'s spectrum blue shifts by only a few tens of meV upon ion pairing without changing shape. We find that the spectrum of the DFT-simulated eaq- red shifts and changes shape upon interaction with Na+, in contrast with experiment. We show that this is because the hydration structure of the DFT-simulated eaq- is too ordered or kosmotropic. Conversely, simulations that produce eaq-'s with a less ordered or chaotropic hydration structure form weaker ion pairs with Na+, yielding predicted spectral blue shifts in better agreement with experiment. Thus, ab initio simulations based on hybrid GGA DFT functionals fail to produce the correct solvation structure for the hydrated electron.
Collapse
Affiliation(s)
- Sanghyun J Park
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Wilberth A Narvaez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|