1
|
Yan TT, Zhou GX, Jiang XL, Qin XC, Li J. Theoretical study of piezoelectric and light absorption properties, and carrier mobilities of Janus TiPX (X = F, Cl, and Br) monolayers. Phys Chem Chem Phys 2024; 26:23998-24007. [PMID: 39246281 DOI: 10.1039/d4cp02590c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Janus TiPX (X = F, Cl, and Br) monolayers were systematically investigated through first-principles calculations. The Janus TiPX monolayers exhibit mechanical and dynamic stability. Two monolayers are indirect bandgap semiconductors, except the TiPBr monolayer, which has the features of a quasi-direct bandgap semiconductor. Biaxial strain can modify the band gap of single layers. The Janus TiPX monolayers have remarkable flexibility and piezoelectric properties. In particular, the TiPF monolayer shows high horizontal (44.18 pm V-1) and vertical piezoelectric coefficients (-3.59 pm V-1). These values exceed those of conventional bulk materials, like GaN (3.1 pm V-1) and α-quartz (2.3 pm V-1). All of the monolayers have absorption coefficients of 105 cm-1 for visible and ultraviolet (UV) light, which are one order of magnitude greater than that of MoSSe. Furthermore, TiPX monolayers have high carrier mobility. Janus TiPX monolayers represent a class of two-dimensional (2D) materials with exceptional properties and multifunctionality, holding significant promise for various applications in piezoelectric sensors, solar cells, and nano-electronic devices.
Collapse
Affiliation(s)
- Tong-Tong Yan
- School of Science, Hebei University of Technology, Tianjin 300401, China.
| | - Guo-Xiang Zhou
- School of Science, Hebei University of Technology, Tianjin 300401, China.
| | - Xiao-Long Jiang
- School of Science, Hebei University of Technology, Tianjin 300401, China.
| | - Xu-Chen Qin
- School of Science, Hebei University of Technology, Tianjin 300401, China.
| | - Jia Li
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
2
|
Liu S, Shang X, Liu X, Wang X, Liu F, Zhang J. Excellent Hole Mobility and Out-of-Plane Piezoelectricity in X-Penta-Graphene (X = Si or Ge) with Poisson's Ratio Inversion. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1358. [PMID: 39195396 DOI: 10.3390/nano14161358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Recently, the application of two-dimensional (2D) piezoelectric materials has been seriously hindered because most of them possess only in-plane piezoelectricity but lack out-of-plane piezoelectricity. In this work, using first-principles calculation, by atomic substitution of penta-graphene (PG) with tiny out-of-plane piezoelectricity, we design and predict stable 2D X-PG (X = Si or Ge) semiconductors with excellent in-plane and out-of-plane piezoelectricity and extremely high in-plane hole mobility. Among them, Ge-PG exhibits better performance in all aspects with an in-plane strain piezoelectric coefficient d11 = 8.43 pm/V, an out-of-plane strain piezoelectric coefficient d33 = -3.63 pm/V, and in-plane hole mobility μh = 57.33 × 103 cm2 V-1 s-1. By doping Si and Ge atoms, the negative Poisson's ratio of PG approaches zero and reaches a positive value, which is due to the gradual weakening of the structure's mechanical strength. The bandgaps of Si-PG (0.78 eV) and Ge-PG (0.89 eV) are much smaller than that of PG (2.20 eV), by 2.82 and 2.47 times, respectively. This indicates that the substitution of X atoms can regulate the bandgap of PG. Importantly, the physical mechanism of the out-of-plane piezoelectricity of these monolayers is revealed. The super-dipole-moment effect proposed in the previous work is proved to exist in PG and X-PG, i.e., it is proved that their out-of-plane piezoelectric stress coefficient e33 increases with the super-dipole-moment. The e33-induced polarization direction is also consistent with the super-dipole-moment direction. X-PG is predicted to have prominent potential for nanodevices applied as electromechanical coupling systems: wearable, ultra-thin devices; high-speed electronic transmission devices; and so on.
Collapse
Affiliation(s)
- Sitong Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xiao Shang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xizhe Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xiaochun Wang
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Fuchun Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jun Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Vu TV, Phuc HV, Phuong LTT, Vi VTT, Kartamyshev AI, Hieu NN. Large piezoelectric responses and ultra-high carrier mobility in Janus HfGeZ 3H (Z = N, P, As) monolayers: a first-principles study. NANOSCALE ADVANCES 2024; 6:4128-4136. [PMID: 39114137 PMCID: PMC11302187 DOI: 10.1039/d4na00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Breaking structural symmetry in two-dimensional layered Janus materials can result in enhanced new phenomena and create additional degrees of piezoelectric responses. In this study, we theoretically design a series of Janus monolayers HfGeZ3H (Z = N, P, As) and investigate their structural characteristics, crystal stability, piezoelectric responses, electronic features, and carrier mobility using first-principles calculations. Phonon dispersion analysis confirms that HfGeZ3H monolayers are dynamically stable and their mechanical stability is also confirmed through the Born-Huang criteria. It is demonstrated that while HfGeN3H is a semiconductor with a large bandgap of 3.50 eV, HfGeP3H and HfGeAs3H monolayers have narrower bandgaps being 1.07 and 0.92 eV, respectively. When the spin-orbit coupling is included, large spin-splitting energy is found in the electronic bands of HfGeZ3H. Janus HfGeZ3H monolayers can be treated as piezoelectric semiconductors with the coexistence of both in-plane and out-of-plane piezoelectric responses. In particular, HfGeZ3H monolayers exhibit ultra-high electron mobilities up to 6.40 × 103 cm2 V-1 s-1 (HfGeAs3H), indicating that they have potential for various applications in nanoelectronics.
Collapse
Affiliation(s)
- Tuan V Vu
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Huynh V Phuc
- Division of Physics, School of Education, Dong Thap University Cao Lanh 870000 Vietnam
| | - Le T T Phuong
- Department of Physics, University of Education, Hue Unversity Hue Vietnam
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University Hue Vietnam
| | - A I Kartamyshev
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
4
|
He QW, Wang JH, Zhu DY, Tang DS, Lv Z, Guo F, Wang XC. Strong Vertical Piezoelectricity and Broad-pH-Value Photocatalyst in Ferroelastic Y 2Se 2BrF Monolayer. NANO LETTERS 2024; 24:8979-8987. [PMID: 38994924 DOI: 10.1021/acs.nanolett.4c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the development of miniaturized devices, there is an increasing demand for 2D multifunctional materials. Six ferroelastic semiconductors, Y2Se2XX' (X, X' = I, Br, Cl, or F; X ≠ X') monolayers, are theoretically predicted here. Their in-plane anisotropic band structure, elastic and piezoelectric properties can be switched by ferroelastic strain. Moderate energy barriers can prevent the undesired ferroelastic switching that minor interferences produce. These monolayers exhibit high carrier mobilities (up to 104 cm2 V-1 s-1) with strong in-plane anisotropy. Furthermore, their wide bandgaps and high potential differences make them broad-pH-value and high-performance photocatalysts at pH value of 0-14. Strikingly, Y2Se2BrF possesses outstanding d33 (d33 = -405.97 pm/V), greatly outperforming CuInP2S6 by 4.26 times. Overall, the nano Y2Se2BrF is a hopeful candidate for multifunctional devices to generate a direct current and achieve solar-free photocatalysis. This work provides a new paradigm for the design of multifunctional energy materials.
Collapse
Affiliation(s)
- Qi-Wen He
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jun-Hui Wang
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Dan-Yang Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dai-Song Tang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zengtao Lv
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Feng Guo
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Xiao-Chun Wang
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
5
|
Jia K, Dong XJ, Li SS, Ji WX, Zhang CW. Novel valley character and tunable quasi-half-valley metal state in Janus monolayer VSiGeP 4. Phys Chem Chem Phys 2024; 26:4683-4691. [PMID: 38251932 DOI: 10.1039/d3cp05636h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The manipulation and regulation of valley characteristics have aroused widespread interest in emerging information fields and fundamental research. Realizing valley polarization is one crucial issue for spintronic and valleytronic applications, the concepts of a half-valley metal (HVM) and ferrovalley (FV) materials have been put forward. Then, to separate electron and hole carriers, a fresh concept of a quasi-HVM (QHVM) has been proposed, in which only one type of carrier is valley polarized for electron and hole carriers. Based on first-principles calculations, we demonstrate that the Janus monolayer VSiGeP4 has QHVM character. To well regulate the QHVM state, strain engineering is utilized to adjust the electronic and valley traits of monolayer VSiGeP4. In the discussed strain range, monolayer VSiGeP4 always favors the ferromagnetic ground state and out-of-plane magnetization, which ensures the appearance of spontaneous valley polarization. It is found that the QHVM state can be induced in different electronic correlations (U), and the strain can effectively tune the valley, magnetic, and electronic features to maintain the QHVM state under various U values. Our work opens up a new research idea in the design of multifunctional spintronic and valleytronic devices.
Collapse
Affiliation(s)
- Kang Jia
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China.
| | - Xiao-Jing Dong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China.
| | - Sheng-Shi Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Wei-Xiao Ji
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Chang-Wen Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China.
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| |
Collapse
|
6
|
Li YQ, Zhang X, Shang X, He QW, Tang DS, Wang XC, Duan CG. Magnetic and Ferroelectric Manipulation of Valley Physics in Janus Piezoelectric Materials. NANO LETTERS 2023; 23:10013-10020. [PMID: 37856232 DOI: 10.1021/acs.nanolett.3c03238] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The realization of multiferroic materials offers the possibility of multifunctional electronic device design. However, the coupling between the multiferroicity and piezoelectricity in Janus materials is rarely reported. In this study, we propose a mechanism for manipulating valley physics by magnetization reversing and ferroelectric switching in multiferroic and piezoelectric material. The ferromagnetic VSiGeP4 monolayer exhibits a large valley polarization up to 100 meV, which can be effectively operated by reversing magnetization. Interestingly, the antiferromagnetic VSiGeP4 bilayers with AB and BA stacking configurations allow the coexistence of valley polarization and ferroelectricity, supporting the proposed strategy for manipulating valley physics via ferroelectric switching and interlayer sliding. In addition, the VSiGeP4 monolayer contains remarkable tunable piezoelectricity regulated by electron correlation U. This study proposes a feasible idea for regulating valley polarization and a general design idea for multifunctional devices with multiferroic and piezoelectric properties, facilitating the miniaturization and integration of nanodevices.
Collapse
Affiliation(s)
- Yun-Qin Li
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science and Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Xian Zhang
- Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiao Shang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qi-Wen He
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dai-Song Tang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xiao-Chun Wang
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science and Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Sheng K, Zhang B, Wang ZY. Piezoelectricity and valley polarization in a semilithiated 2H-TiTe 2 monolayer with near room-temperature ferromagnetism. Phys Chem Chem Phys 2023; 25:23738-23745. [PMID: 37615079 DOI: 10.1039/d3cp02532b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Two-dimensional ferromagnetic semiconductors with coupled valley physics and piezoelectric responses offer unprecedented opportunities to miniaturize low-power multifunctional integrated devices. Prompted by epitaxial fabrication of nonmagnetic 2H-TiTe2 monolayer on the Au(111) substrate, we predict through both density functional theory and Monte Carlo simulations that the semilithiated 2H-TiTe2 monolayer (Li@2H-TiTe2) is a stable near room-temperature semiconducting ferromagnet. Under an out-of-plane magnetization, Li@2H-TiTe2 exhibits a clean valley polarization up to 160 meV in its conduction band and a valley-contrasting Berry curvature due to the broken inversion and time-reversal symmetries, in favor of achievable anomalous valley Hall effect. Alternatively, the simultaneous charge, spin, valley Hall currents can be realized as well in the ferromagnetic system with circularly polarized light. Furthermore, the missing mirror symmetry generates a scarce vertical piezoelectricity as large as 0.89 pm V-1. These findings indicate that asymmetric surface functionalization by Li deposition on the 2H-TiTe2 monolayer opens up a vital avenue to predesign superior and tailored multifunctional materials.
Collapse
Affiliation(s)
- Kang Sheng
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China.
| | - Bokai Zhang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China.
| | - Zhi-Yong Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China.
| |
Collapse
|
8
|
Su P, Ye H, Sun N, Liu S, Zhang H. Second Harmonic Generation in Janus Transition Metal Chalcogenide Oxide Monolayers: A First-Principles Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2150. [PMID: 37513161 PMCID: PMC10386494 DOI: 10.3390/nano13142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Due to the unique optical responses induced by vertical atomic asymmetry inside a monolayer, two-dimensional Janus structures have been conceived as promising building blocks for nanoscale optical devices. In this paper, second harmonic generation (SHG) in Janus transition metal chalcogenide oxide monolayers is systematically investigated by the first-principles calculations. Second-order nonlinear susceptibilities are theoretically determined for Janus MXO (M = Mo/W, X = S/Se/Te) monolayers. The calculated values are comparable in magnitude with Janus MoSSe monolayer. X-M-O symmetry breaking leads to non-zero components in vertical direction, compared with the non-Janus structure. Focusing on the SHG induced by incident light at 1064 nm, polarization-dependent responses of six Janus MXO monolayers are demonstrated. The symmetry of p-polarization changes from six-fold to three-fold with acute incidence angle. Moreover, the effects of biaxial strain on band structures and SHG are further investigated, taking MoSO as an exemplary case. We expect these results to bring in recipes for designing nonlinear optical devices based on Janus transition metal chalcogenide oxide monolayers.
Collapse
Affiliation(s)
- Peng Su
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Naizhang Sun
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Shining Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hu Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|