Liu W, Wu H, Liang T, Miao R, Riaz S, Fan J. Critical Roles of Octahedron Bilayer Surface/Interior Bromide Defects in Photodynamics of Multi-Quantum-Well-Structured Cesium Bismuth Bromide.
J Phys Chem Lett 2023:5546-5552. [PMID:
37294772 DOI:
10.1021/acs.jpclett.3c01189]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate theoretically the roles of the intrinsic point defects in the photophysics of wide-bandgap multi-quantum-well-structured Cs3Bi2Br9 based on the Shockley-Read-Hall statistics and multiphonon recombination theory. The GW plus Bethe-Salpeter equation calculation reveals that there is a prominent exciton peak below the interband absorption edge, and it clarifies the experimental debate. The most energetically favorable native defects possess deep thermodynamic transition levels. The bromide self-interstitials within the octahedron bilayers exhibit as efficient carrier trapping centers through the non-radiative multiphonon recombination, with a lifetime of 184 ns being on the same order of magnitude as the experimental value. The octahedron bilayer surface bromide self-interstitials account for the experimentally observed dominant blue luminescence in Cs3Bi2Br9. These results reveal that the intrinsic point defects at different sites of the multi-quantum-well-like octahedron bilayers play different roles in the photodynamics of such unique layer-structured semiconductors.
Collapse