1
|
Bostan D, Mandal B, Babikov D. Mixed quantum/classical theory for rotationally inelastic scattering of identical collision partners revised. Phys Chem Chem Phys 2024. [PMID: 39463353 DOI: 10.1039/d4cp02806f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mixed quantum/classical theory (MQCT) for the treatment of rotationally inelastic transitions during collisions of two identical molecules, described either as indistinguishable or distinguishable partners, is reviewed. The treatment of two molecules as indistinguishable includes symmetrization of rotational wavefunctions, introduces exchange parity, and leads to state-to-state transition matrix elements different from those in the straightforward treatment of molecules as distinguishable. Moreover, the treatment of collision partners as indistinguishable is eight times faster. Numerical results presented herein for H2 + H2, CO + CO and H2O + H2O systems indicate good agreement of MQCT calculations with full-quantum calculations from the literature and show that an a posteriori correction, applied after treatment of the collision partners as distinguishable, generally produces good results that agree well with the rigorous treatment of collision partners as indistinguishable. This correction for the cross section includes either multiplication by 2 or a summation over physically indistinguishable processes, depending on the transition type. After this correction, the results of the two treatments agree within 5% for most but may reach 10-20% for some transitions. At low collision energies dominated by scattering resonances, these differences can be larger, but they tend to decrease as collision energy is increased. It is also shown that if the system is artificially forced to follow the same collision path in the indistinguishable and distinguishable treatments, then all differences between the results of the two treatments disappear. This interesting finding gives new insight into the collision process and indicates that the indistinguishability of identical collision partners comes into play through the collision path itself, rather than through matrix elements of inelastic transitions.
Collapse
Affiliation(s)
- D Bostan
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - B Mandal
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - D Babikov
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| |
Collapse
|
2
|
Joy C, Mandal B, Bostan D, Dubernet ML, Babikov D. Mixed quantum/classical theory (MQCT) approach to the dynamics of molecule-molecule collisions in complex systems. Faraday Discuss 2024; 251:225-248. [PMID: 38770664 DOI: 10.1039/d3fd00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We developed a general theoretical approach and a user-ready computer code that permit study of the dynamics of collisional energy transfer and ro-vibrational energy exchange in complex molecule-molecule collisions. The method is a mixture of classical and quantum mechanics. The internal ro-vibrational motion of collision partners is treated quantum mechanically using a time-dependent Schrödinger equation that captures many quantum phenomena including state quantization and zero-point energy, propensity and selection rules for state-to-state transitions, quantum symmetry and interference phenomena. A significant numerical speed up is obtained by describing the translational motion of collision partners classically, using the Ehrenfest mean-field trajectory approach. Within this framework a family of approximate methods for collision dynamics is developed. Several benchmark studies for diatomic and triatomic molecules, such as H2O and ND3 collided with He, H2 and D2, show that the results of MQCT are in good agreement with full-quantum calculations in a broad range of energies, especially at high collision energies where they become nearly identical to the full quantum results. Numerical efficiency of the method and massive parallelism of the MQCT code permit us to embrace some of the most complicated collisional systems ever studied, such as C6H6 + He, CH3COOH + He and H2O + H2O. Application of MQCT to the collisions of chiral molecules such as CH3CHCH2O + He, and to molecule-surface collisions is also possible and will be pursued in the future.
Collapse
Affiliation(s)
- Carolin Joy
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Bikramaditya Mandal
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Dulat Bostan
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Marie-Lise Dubernet
- Observatoire de Paris, PSL University, Sorbonne Universite, CNRS, SYRTE, Paris, France
| | - Dmitri Babikov
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| |
Collapse
|
3
|
Bostan D, Mandal B, Joy C, Żółtowski M, Lique F, Loreau J, Quintas-Sánchez E, Batista-Planas A, Dawes R, Babikov D. Mixed quantum/classical calculations of rotationally inelastic scattering in the CO + CO system: a comparison with fully quantum results. Phys Chem Chem Phys 2024; 26:6627-6637. [PMID: 38115799 DOI: 10.1039/d3cp05369e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An updated version of the CO + CO potential energy surface from [R. Dawes, X. G. Wang and T. Carrington, J. Phys. Chem. A 2013, 117, 7612] is presented, that incorporates an improved treatment of the asymptotic behavior. It is found that this new surface is only slightly different from the other popular PES available for this system in the literature [G. W. M. Vissers, P. E. S. Wormer and A. Van Der Avoird, Phys. Chem. Chem. Phys. 2003, 5, 4767]. The differences are quantified by expanding both surfaces over a set of analytic functions and comparing the behavior of expansion coefficients along the molecule-molecule distance R. It is shown that all expansion coefficients behave similarly, except in the very high energy range at small R where the PES is repulsive. That difference has no effect on low collision-energy dynamics, which is explored via inelastic scattering calculations carried out using the MQCT program which implements the mixed quantum/classical theory for molecular energy exchange processes. The validity of MQCT predictions of state-to-state transition cross sections for CO + CO is also tested by comparison against full-quantum coupled-states calculations. In all cases MQCT gives reliable results, except at very low collision energy where the full-quantum calculations predict strong oscillations of state-to-state transition cross sections due to resonances. For strong transitions with large cross sections, the results of MQCT are reliable, especially at higher collision energy. For weaker transitions, and lower collision energies, the cross sections predicted by MQCT may be up to a factor of 2-3 different from those obtained by full-quantum calculations.
Collapse
Affiliation(s)
- Dulat Bostan
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Bikramaditya Mandal
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Carolin Joy
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Michał Żółtowski
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - François Lique
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Jérôme Loreau
- KU Leuven, Department of Chemistry, B-3001 Leuven, Belgium
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Adrian Batista-Planas
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Dmitri Babikov
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| |
Collapse
|
4
|
Imanzi K, Bostan D, McCrea M, Featherstone J, Brouard M, Babikov D. Symmetry Breaking: A Classic Example of Quantum Interference Captured by Mixed Quantum/Classical Theory. J Phys Chem Lett 2023; 14:10617-10623. [PMID: 37982682 DOI: 10.1021/acs.jpclett.3c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The phenomena of propensity and inverse propensity are explored using time-dependent mixed quantum classical theory, MQCT, in which the rotational motion of the molecule is treated quantum mechanically, whereas the scattering process is described classically. Good agreement with the results of accurate full-quantum calculations is reported for a closed shell approximation to the NO + Ar system. It is shown that MQCT reproduces both phenomena in a broad range of the final states of the molecule and for various initial rotational states, offering a unique time-dependent insight. It permits seeing that both propensity and inverse propensity occur due to efficient depopulation of some states at the early postcollisional stage of the scattering process, when the molecule exists in a coherent superposition of many excited states that span a very broad range of angular momentum quantum numbers, populated by an efficient stepladder process of many consecutive transitions with small Δj.
Collapse
Affiliation(s)
- Kayla Imanzi
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Dulat Bostan
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Max McCrea
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Josh Featherstone
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Dmitri Babikov
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|