1
|
Huang H, Chen Z, Zheng H, Ou Y, Zhang J, Xiao K, Huang J, Liu ZQ, Chen Y. Water-Vapor-Triggered Dual-Mode Optical Responses in Rare-Earth-Doped Hollow Nanospheres. NANO LETTERS 2024; 24:15001-15007. [PMID: 39547712 DOI: 10.1021/acs.nanolett.4c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Multimode responsive optical materials are garnering ever-increasing attention due to their diverse applications. This work showcases a film assembled with rare-earth-doped CaF2 hollow nanospheres that exhibit water-vapor-triggered dual-mode optical responses. Upon exposure to flowing water vapor, the film rapidly (less than 1.5 s for a 7.7 μm thickness) transitions to a transparent state and simultaneously undergoes a sharp decrease in the photoluminescence intensity. Both of these changes fully reverse upon water evaporation, demonstrating an impressive reversibility over at least 200 cycles. The water-vapor-induced dual-mode responses are attributed to the altered incident light propagation path stemming from the similar refractive indices between CaF2 and water, coupled with the water-induced energy loss of the rare-earth ions. The fabrication of encryption patterns displaying separate signals in multiple channels, as well as the demonstration of noncontact sensing for water vapor distribution, underscore the promising application potential of this dual-mode responsive system.
Collapse
Affiliation(s)
- Hongji Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Zixian Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Hanqi Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yingyi Ou
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Jianing Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Nielsen VRM, Le Guennic B, Sørensen TJ. Evaluation of Point Group Symmetry in Lanthanide(III) Complexes: A New Implementation of a Continuous Symmetry Operation Measure with Autonomous Assignment of the Principal Axis. J Phys Chem A 2024; 128:5740-5751. [PMID: 38935479 DOI: 10.1021/acs.jpca.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The structure of molecular systems dictates the physical properties, and symmetry is the determining factor for all electronic properties. This makes group theory a powerful tool in quantum mechanics to compute molecular properties. For inorganic compounds, the coordination geometry has been estimated as idealized polyhedra with high symmetry, which, through ligand field theory, provides predictive capabilities. However, real samples rarely have ideal symmetry, and although continuous shape measures (CShM) can be used to evaluate deviation from an ideal reference structure σideal, this often fails for lanthanide(III) complexes with high coordination numbers, no obvious choice of principal axes, and no obvious reference structure. In lanthanide complexes, the unique electronic structures and associated properties are intricately tied to the symmetry around the lanthanide center. Therefore, robust methodologies to evaluate and estimate point group symmetry are instrumental for building structure-property relationships. Here, we have demonstrated an algorithmic approach that orients a molecular structure Q in the best possible way to the symmetry axis of any given point group G and computes a deviation from the ideal symmetry σsym(G,Q). This approach does not compute the deviation from an ideal reference system, but the intrinsic deviation in the structure induced by symmetry operations. If the structure contains the symmetry operation, there is no deviation and σsym(G,Q) = 0. The σsym deviation is generated from all of the symmetry operation ÔS in a point group G using the most correct orientation of the sample structure in each group G. The best orientation is found by an algorithm that minimizes the orientation of the structure with respect to G. To demonstrate the methodology, we have investigated the structure and symmetry of 8- and 9-coordinated lanthanide(III) aqua complexes and correlated the luminescence from 3 europium(III) crystals to their actual symmetry. To document the methodology, the approach has been tested on 26 molecules with different symmetries. It was concluded that the method is robust and fully autonomous.
Collapse
Affiliation(s)
- Villads R M Nielsen
- Department of Chemistry and NanoScience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Boris Le Guennic
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 35000 Rennes, France
| | - Thomas Just Sørensen
- Department of Chemistry and NanoScience Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Kofod N, Sørensen TJ. Step-wise changes in the excited state lifetime of [Eu(D 2O) 9] 3+ and [Eu(DOTA)(D 2O)] - as a function of the number of inner-sphere O-H oscillators. Dalton Trans 2024; 53:9741-9749. [PMID: 38780119 DOI: 10.1039/d4dt00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lanthanide luminescence is dominated by quenching by high-energy oscillators in the chemical environment. The rate of non-radiative energy transfer to a single H2O molecule coordinated to a Eu3+ ion exceeds the usual rates of emission by an order of magnitude. We know these rates, but the details of these energy transfer processes are yet to be established. In this work, we study the quenching rates of [Eu(D2O)9]3+ and [Eu(DOTA)(D2O)]- in H2O/D2O mixtures by sequentially exchanging the deuterons with protons. Flash freezing the solutions allows us to identify species with various D/H contents in solution and thus to quantify the energy transfer processes to individual OH-oscillators. This is not possible in solution due to fast exchange in the ensembles present at room temperature. We conclude that the energy transfer processes are accurately described, predicted, and simulated using a step-wise addition of the rates of quenching by each O-H oscillator. This documents the sequential increase in the rate of the energy transfer processes in the quenching of lanthanide luminescence, and further provides a methodology to identify isotopic impurities in deuterated lanthanide systems in solution.
Collapse
Affiliation(s)
- Nicolaj Kofod
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M9 13PL, UK.
- Department of Chemistry and Nano-Science Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Thomas Just Sørensen
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M9 13PL, UK.
| |
Collapse
|
4
|
Kofod N, Henrichsen MJ, Sørensen TJ. Mapping the distribution of electronic states within the 5D 4 and 7F 6 levels of Tb 3+ complexes with optical spectroscopy. Dalton Trans 2024; 53:4461-4470. [PMID: 38372338 DOI: 10.1039/d3dt03657j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The Tb(III) ion has the most intense luminescence of the trivalent lanthanide(III) ions. In contrast to Eu(III), where the two levels only include a single state, the high number of electronic states in the ground (7F6) and emitting (5D4) levels makes detailed interpretations of the electronic structure-the crystal field-difficult. Here, luminescence emission and excitation spectra of Tb(III) complexes with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA, [Tb(DOTA)(H2O)]-), ethylenediaminetetraacetic acid (EDTA, [Tb(EDTA)(H2O)3]-) and diethylenetriaminepentaacetic acid (DTPA, [Tb(DTPA)(H2O)]2-) as well as the Tb(III) aqua ion ([Tb(H2O)9]3+) were recorded at room temperature and in frozen solution. Using these data the electronic structure of the 5D4 multiplets of Tb(III) was mapped by considering the transitions to the singly degenerate 7F0 state. A detailed spectroscopic investigation was performed and it was found that the 5D4 multiplet could accurately be described as a single band for [Tb(H2O)9]3+, [Tb(DOTA)(H2O)]- and [Tb(EDTA)(H2O)3]-. In contrast, for [Tb(DTPA)(H2O)]2- two bands were needed. These results demonstrated the ability of describing the electronic structure of the emitting 5D4 multiplet using emission spectra. This offers an avenue for investigating the relationship between molecular structure and luminescent properties in detailed photophysical studies of Tb(III) ion complexes.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Margrete Juel Henrichsen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| |
Collapse
|
5
|
Fahad S, Li S, Zhai Y, Zhao C, Pikramenou Z, Wang M. Luminescence-Based Infrared Thermal Sensors: Comprehensive Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304237. [PMID: 37679096 DOI: 10.1002/smll.202304237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Indexed: 09/09/2023]
Abstract
Recent chronological breakthroughs in materials innovation, their fabrication, and structural designs for disparate applications have paved transformational ways to subversively digitalize infrared (IR) thermal imaging sensors from traditional to smart. The noninvasive IR thermal imaging sensors are at the cutting edge of developments, exploiting the abilities of nanomaterials to acquire arbitrary, targeted, and tunable responses suitable for integration with host materials and devices, intimately disintegrate variegated signals from the target onto depiction without any discomfort, eliminating motional artifacts and collects precise physiological and physiochemical information in natural contexts. Highlighting several typical examples from recent literature, this review article summarizes an accessible, critical, and authoritative summary of an emerging class of advancement in the modalities of nano and micro-scale materials and devices, their fabrication designs and applications in infrared thermal sensors. Introduction is begun covering the importance of IR sensors, followed by a survey on sensing capabilities of various nano and micro structural materials, their design architects, and then culminating an overview of their diverse application swaths. The review concludes with a stimulating frontier debate on the opportunities, difficulties, and future approaches in the vibrant sector of infrared thermal imaging sensors.
Collapse
Affiliation(s)
- Shah Fahad
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Song Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yufei Zhai
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Cong Zhao
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Lv C, Pu S, Wu L, Hou X. Self-calibrated HAp:Tb-EDTA paper-based probe with dual emission ratio fluorescence for binary visual and fluorescent detection of anthrax biomarker. Talanta 2024; 266:124979. [PMID: 37506518 DOI: 10.1016/j.talanta.2023.124979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Development of the portable device is significant for sensitive and rapid detection of an anthrax biomarker dipicolinic acid (DPA), existing in the B. anthracis. In this work, a novel HAp:Tb-EDTA paper-based ratiometric fluorescent sensor was obtained by a simple one-pot method for rapid and sensitive DPA detection. With the increased DPA concentration, the luminescence intensity of HAp (hydroxyapatite) remained constant, and thus applied as the stable reference signal, while the luminescence signal of Tb3+-EDTA was significantly enhanced due to the antenna effect. Therefore, the HAp:Tb-EDTA paper-based sensor was endowed with self-calibrated and ratiometric fluorescent detection performance for DPA. The proposed sensor showed excellent detection performance with a detection limit as low as 10.8 nM in the linear range of 0.5-30 μM. After combination with a smartphone, rapid visual and fluorescent detection of DPA was achieved. The proposed sensor was successfully applied to detect DPA from B. subtilis spore real samples, showing the application prospects of the paper-based sensors and opening a new horizon to develop novel paper-based point-of-care testing (POCT) devices.
Collapse
Affiliation(s)
- Caizhi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Shan Pu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Lan Wu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, Sichuan, China; College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| |
Collapse
|
7
|
Nosov VG, Toikka YN, Petrova AS, Butorlin OS, Kolesnikov IE, Orlov SN, Ryazantsev MN, Kolesnik SS, Bogachev NA, Skripkin MY, Mereshchenko AS. Brightly Luminescent (Tb xLu 1-x) 2bdc 3·nH 2O MOFs: Effect of Synthesis Conditions on Structure and Luminescent Properties. Molecules 2023; 28:molecules28052378. [PMID: 36903620 PMCID: PMC10005128 DOI: 10.3390/molecules28052378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.
Collapse
Affiliation(s)
- Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Yulia N. Toikka
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Anna S. Petrova
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Oleg S. Butorlin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Ilya E. Kolesnikov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Sergey N. Orlov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Federal State Unitary Enterprise “Alexandrov Research Institute of Technology”, 72 Koporskoe Shosse, 188540 Sosnovy Bor, Russia
- Institute of Nuclear Industry, Peter the Great St. Petersburg Polytechnic University (SPbSU), 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, ul. Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Stefaniia S. Kolesnik
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-951-677-5465
| |
Collapse
|