1
|
Das A, Liu D, Wu Y, Abzakh BA, R M, M P, Kazakova EA, Vasenko AS, Prezhdo OV. Origin of the Improved Photoelectrochemical and Photocatalytic Activity in a ZnO-TiO 2 Nanohybrid Revealed by Experimental and Density Functional Theory Studies. J Phys Chem Lett 2024; 15:7524-7532. [PMID: 39023018 DOI: 10.1021/acs.jpclett.4c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Heterojunctions of metal oxides have attracted a great deal of attention as photo (electro) catalysts owing to their excellent photoactivity. While multiple fundamental studies have been dedicated to heteroaggregation, self-assembly of oppositely charged particles to obtain heterojunctions for energy applications has been underexplored. Herein, we report the synthesis of ZnO-TiO2 heterojunctions using the electrostatic self-assembly approach. The synthesized ZnO-TiO2 heterojunctions were characterized by using multiple experimental techniques. Density functional theory calculations were conducted to establish the heterojunction formation mechanism and electronic properties. The ZnO-TiO2 nanohybrid was tested for the photodegradation of rhodamine B dye and water splitting applications. The photocatalytic performance of the ZnO-TiO2 nanohybrid is 3.5 times higher than that of bare ZnO. In addition, the heterostructure exhibited an excellent photocurrent density of 2.4 mA cm-2 at a low onset potential during photoelectrochemical oxygen evolution. The performance improvements are attributed to the formation of the type II heterojunction between ZnO and TiO2, which suppresses carrier recombination and enhances carrier transport, boosting the catalytic activity.
Collapse
Affiliation(s)
- Abinash Das
- PSG Institute of Advanced Studies, Coimbatore 641004, Tamil Nadu, India
| | | | - Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | - Madhumitha R
- PSG Institute of Advanced Studies, Coimbatore 641004, Tamil Nadu, India
| | - Preethi M
- PSG Institute of Advanced Studies, Coimbatore 641004, Tamil Nadu, India
| | - Elena A Kazakova
- Department of Biochemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- Donostia International Physics Center (DIPC), 20018 San Sebastián-Donostia, Euskadi, Spain
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Ghosh A, Pramanik A, Pal S, Sarkar P. Emergence of Z-Scheme Photocatalysis for Total Water Splitting: An Improvised Route to High Efficiency. J Phys Chem Lett 2024; 15:6841-6851. [PMID: 38917061 DOI: 10.1021/acs.jpclett.4c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Photocatalytic water splitting to spontaneously produce H2 and O2 is a long-standing goal in solar energy conversion, presenting a significant challenge without using sacrificial electron donors or external biases. Inspired by natural photosynthesis, the design of artificial Z-scheme photocatalytic systems is at the forefront of this field. These systems achieve higher redox potential by separating photogenerated electrons and holes through a fast interlayer recombination process between valence and conduction band edges. Z-scheme photocatalysis involves using two different semiconductors with distinct bandgap energies. Here, we explore potential systems based on two-dimensional (2D) heterostructures composed of carbon, nitrogen, or similar main group elements. The advantages and disadvantages of these systems are discussed, with a focus on enhancing their efficiency through strategic design. Special emphasis is placed on the dynamics of excited charge carrier transfer and recombination processes, which are crucial for developing efficient photocatalytic systems for overall water splitting.
Collapse
Affiliation(s)
- Atish Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia 723104, India
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
3
|
Zhang Q, Xiong Y, Gao Y, Chen J, Hu W, Yang J. First-Principles High-Throughput Inverse Design of Direct Momentum-Matching Band Alignment van der Waals Heterostructures Utilizing Two-Dimensional Indirect Semiconductors. NANO LETTERS 2024; 24:3710-3718. [PMID: 38484178 DOI: 10.1021/acs.nanolett.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted widespread attention in photocatalysis. Herein, we employ a novel strategy utilizing first-principles high-throughput inverse design of 2D Z-scheme heterojunctions for photocatalysis. This approach is anchored in high-throughput screening conditions, which are fundamentally based on the characteristics of carrier mechanisms influenced significantly by Z-scheme heterojunctions. A pivotal element of our screening process is the integration of the indirect-to-direct bandgap transition with momentum-matching band alignment in k-space, guiding us to combine two 2D indirect bandgap monolayers into direct Z-scheme heterojunctions characterized by pronounced interlayer excitons. Various stacking modes introduce extra and distinct degrees of freedom that can be useful for tuning the properties of heterostructures, encompassing factors such as components, stacking patterns, and sequences. We demonstrate that various stacking modes can facilitate the indirect-to-direct bandgap transition and the emergence of interlayer excitons. These findings provide exciting opportunities for designing Z-scheme heterojunctions in photocatalysis.
Collapse
Affiliation(s)
- Qian Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yuanfan Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yunzhi Gao
- Hefei National Research Center for Physical Sciences at the Microscale, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jiajia Chen
- Hefei National Research Center for Physical Sciences at the Microscale, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
4
|
Luo X, Zhao X, Zhao X, Li Y. Electron-Phonon Coupling-Mediated Ultralong Carrier Lifetime in an All-Inorganic Two-Dimensional Cs 2PbI 2Cl 2 Perovskite: Explanation for the High Antisite Defect Tolerance. J Phys Chem Lett 2024; 15:1784-1794. [PMID: 38329066 DOI: 10.1021/acs.jpclett.3c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Two-dimensional (2D) halide perovskite are appealing candidates for applications in optoelectronics and photovoltaics, but their energy conversion efficiency is severely limited by nonradiative electron-hole recombination. In most investigations, point defects with deep defect levels and deep charge-state transition levels in the band gap are treated as the carrier recombination centers. For the all-inorganic 2D Css 2PbI2Cl2, the IPb antisite defect is the most likely to form and cause nonradiative electron-hole recombination. By using density functional theory and ab initio nonradiative molecular dynamics calculations, we found that the IPb defect can introduce the deep acceptor and donor levels into the band gap. Because electron-phonon coupling gives rise to weak nonadiabatic coupling and rapid loss of electronic coherence, those levels lead to a reduction of the carrier loss and the prolongation of the excited-state carrier lifetime, thereby enhancing the photoelectric and defect tolerance properties of the Cs2PbI2Cl2 material. These results could deepen the understanding of the chemistry of defects and carrier dynamics in perovskite materials.
Collapse
Affiliation(s)
- Xingyun Luo
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaoji Zhao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xian Zhao
- Center for Optics Research and Engineering of Shandong University, Shandong University, Qingdao 266237, China
| | - Yanlu Li
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Lin CB, Sheng YX, Sun FL, Chen WX, Zhuang GL. Visible-Light Photocatalytic Overall Water Splitting on a B 4C 3/C xN y Z-Scheme Heterojunction: Role of Ultrafast Carrier Recombination-Transfer Kinetics. J Phys Chem Lett 2023; 14:11447-11456. [PMID: 38085811 DOI: 10.1021/acs.jpclett.3c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Herein, combining density functional theory (DFT) calculations with nonadiabatic molecular dynamics (NAMD), we built a computational framework to rationally screen from a series of 2D conjugated carbon nitrides (CNs) to match with B4C3, resulting in the excellent direct Z-scheme photocatalyst (B4C3/C6N6) for overall water splitting (OWS). Studies on interface engineering and ultrafast dynamics of carrier recombination-transfer show that in the B4C3/C6N6 system, compared with the slower interlayer migration process of carriers, strong nonadiabatic coupling and longer quantum decoherence time accelerates weak carrier interlayer recombination on a subpicosecond time scale, enabling simultaneous triggering of hydrogen evolution reaction (HER) with ΔG = -0.23 eV and spontaneous oxygen evolution reaction (OER) in the absence of sacrificial or cocatalysts. In general, our work will promote the design of efficient direct Z-scheme photocatalysts from an ultrafast dynamics perspective.
Collapse
Affiliation(s)
- Cun-Biao Lin
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Yin-Xiao Sheng
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Fu-Li Sun
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Wen-Xian Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Gui-Lin Zhuang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| |
Collapse
|
6
|
Wan XQ, Yang CL, Li XH, Wang MS, Ma XG. Insights into Photogenerated Carrier Dynamics and Overall Water Splitting of the CrS 3/GeSe Heterostructure. J Phys Chem Lett 2023; 14:9126-9135. [PMID: 37793127 DOI: 10.1021/acs.jpclett.3c01780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Based on the nonadiabatic molecular dynamics (NAMD) simulations and the first-principles calculations, we explore the overall water-splitting schemes and the photogenerated carrier dynamics for two configurations (CG and CyG) of the CrS3/GeSe van der Waals heterostructures. The photocatalytic direct Z-schemes and carrier migration pathways for hydrogen and oxygen evolution reactions (HER/OER) are constructed based on the electronic properties. The solar-to-hydrogen efficiency (η'STH values) of the schemes can reach 10.60% and 10.17% and further rise under tensile strain. The NAMD results demonstrate similar transfer times of the electron/hole for HER/OER and more rapid electron-hole recombination in CG enables it to be superior to CyG in photocatalytic performance. Moreover, the Gibbs free energy indicates that both the HERs and OERs turn to spontaneously proceed with CG and CyG at pH = 0-12.37 and pH = 2.55-11.01, respectively. These facts reveal that the CrS3/GeSe heterostructure is promising in photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Xue-Qing Wan
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Chuan-Lu Yang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
- Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiao-Hu Li
- Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
- Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi 830011, China
| | - Mei-Shan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiao-Guang Ma
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|