1
|
Yagi K, Gunst K, Shiozaki T, Sugita Y. High-performance QM/MM Enhanced Sampling Molecular Dynamics Simulations with GENESIS SPDYN and QSimulate-QM. J Chem Theory Comput 2025. [PMID: 40174884 DOI: 10.1021/acs.jctc.5c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
A new module for quantum mechanical/molecular mechanical (QM/MM) calculations is implemented in a molecular dynamics (MD) program, SPDYN in GENESIS, interfaced with an electronic structure program, QSimulate-QM. The periodic boundary condition (PBC) in QM/MM simulation is incorporated via QM calculation in real space with duplicated MM charges and particle mesh Ewald (PME) calculation with QM and MM charges. A highly optimized code is implemented in QSimulate-QM, particularly for the density functional tight-binding (DFTB) method, where the interaction between the QM and MM regions is computed utilizing multipole expansions. Together with highly parallelized algorithms in SPDYN, the developed program performs MD simulations based on DFTB in the QM size of ∼100 atoms and MM of ∼100,000 atoms with a better performance than 1 ns/day using one computer node. This feature paves the way for QM/MM-MD enhanced sampling simulations. Various enhanced sampling methods in GENESIS, namely, generalized replica exchange solute tempering (gREST), replica-exchange umbrella sampling (REUS), and path sampling with the string method, are demonstrated at the QM/MM level to compute the Ramachandran plot of alanine dipeptide and the potential of mean force (PMF) of a proton transfer reaction in an enzyme.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Klaas Gunst
- Quantum Simulation Technologies, Inc.,Boston, Massachusetts 02135, United States
| | - Toru Shiozaki
- Quantum Simulation Technologies, Inc.,Boston, Massachusetts 02135, United States
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
2
|
Abstract
Despite the success and widespread use of QM/MM methods in modeling (bio)chemically important processes, their accuracy is still not well understood. A key reason is because these methods are ultimately approximations to direct QM calculations of very large systems, which are impractical to perform in most cases. We highlight recent progress toward the development of realistic model systems where it is possible to obtain full QM reference data to directly and systematically evaluate the effectiveness of different QM/MM generation schemes. These model systems are highly flexible and can be tailored to probe the sensitivity of a QM/MM model to different reaction types and simulation parameters such as pairing of QM and MM potentials, QM region size, and composition. It is envisaged that this strategy could be used to directly validate different QM/MM generation schemes and spur the development of more robust models in the future.
Collapse
Affiliation(s)
- Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Haibo Yu
- Molecular Horizons, School of Chemistry and Molecular Bioscience, and ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Mackenzie Taylor
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junbo Chen
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Wang M, Mei Y, Ryde U. Convergence criteria for single-step free-energy calculations: the relation between the Π bias measure and the sample variance. Chem Sci 2024; 15:8786-8799. [PMID: 38873060 PMCID: PMC11168088 DOI: 10.1039/d4sc00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Free energy calculations play a crucial role in simulating chemical processes, enzymatic reactions, and drug design. However, assessing the reliability and convergence of these calculations remains a challenge. This study focuses on single-step free-energy calculations using thermodynamic perturbation. It explores how the sample distributions influence the estimated results and evaluates the reliability of various convergence criteria, including Kofke's bias measure Π and the standard deviation of the energy difference ΔU, σ ΔU . The findings reveal that for Gaussian distributions, there is a straightforward relationship between Π and σ ΔU , free energies can be accurately approximated using a second-order cumulant expansion, and reliable results are attainable for σ ΔU up to 25 kcal mol-1. However, interpreting non-Gaussian distributions is more complex. If the distribution is skewed towards more positive values than a Gaussian, converging the free energy becomes easier, rendering standard convergence criteria overly stringent. Conversely, distributions that are skewed towards more negative values than a Gaussian present greater challenges in achieving convergence, making standard criteria unreliable. We propose a practical approach to assess the convergence of estimated free energies.
Collapse
Affiliation(s)
- Meiting Wang
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University Xinxiang 453003 China
- Department of Computational Chemistry, Lund University, Chemical Centre P.O. Box 124 SE-221 00 Lund Sweden
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai Shanghai 200062 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| | - Ulf Ryde
- Department of Computational Chemistry, Lund University, Chemical Centre P.O. Box 124 SE-221 00 Lund Sweden
| |
Collapse
|
4
|
Giese TJ, Ekesan Ş, McCarthy E, Tao Y, York DM. Surface-Accelerated String Method for Locating Minimum Free Energy Paths. J Chem Theory Comput 2024; 20:2058-2073. [PMID: 38367218 PMCID: PMC11059188 DOI: 10.1021/acs.jctc.3c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
We present a surface-accelerated string method (SASM) to efficiently optimize low-dimensional reaction pathways from the sampling performed with expensive quantum mechanical/molecular mechanical (QM/MM) Hamiltonians. The SASM accelerates the convergence of the path using the aggregate sampling obtained from the current and previous string iterations, whereas approaches like the string method in collective variables (SMCV) or the modified string method in collective variables (MSMCV) update the path only from the sampling obtained from the current iteration. Furthermore, the SASM decouples the number of images used to perform sampling from the number of synthetic images used to represent the path. The path is optimized on the current best estimate of the free energy surface obtained from all available sampling, and the proposed set of new simulations is not restricted to being located along the optimized path. Instead, the umbrella potential placement is chosen to extend the range of the free energy surface and improve the quality of the free energy estimates near the path. In this manner, the SASM is shown to improve the exploration for a minimum free energy pathway in regions where the free energy surface is relatively flat. Furthermore, it improves the quality of the free energy profile when the string is discretized with too few images. We compare the SASM, SMCV, and MSMCV using 3 QM/MM applications: a ribozyme methyltransferase reaction using 2 reaction coordinates, the 2'-O-transphosphorylation reaction of Hammerhead ribozyme using 3 reaction coordinates, and a tautomeric reaction in B-DNA using 5 reaction coordinates. We show that SASM converges the paths using roughly 3 times less sampling than the SMCV and MSMCV methods. All three algorithms have been implemented in the FE-ToolKit package made freely available.
Collapse
Affiliation(s)
- Timothy J. Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yujun Tao
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|