1
|
Sharma M, Sierka M. Optical Gaps of Ionic Materials from GW/BSE-in-DFT and CC2-in-DFT. J Chem Theory Comput 2024; 20:9592-9605. [PMID: 39417709 PMCID: PMC11562370 DOI: 10.1021/acs.jctc.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
This work presents a density functional theory (DFT)-based embedding technique for the calculation of optical gaps in ionic solids. The approach partitions the supercell of the ionic solid and embeds a small molecule-like cluster in a periodic environment using a cluster-in-periodic embedding method. The environment is treated with DFT, and its influence on the cluster is captured by a DFT-based embedding potential. The optical gap is estimated as the lowest singlet excitation energy of the embedded cluster, obtained using a wave function theory method: second-order approximate coupled-cluster singles and doubles (CC2), and a many-body perturbation theory method: GW approximation combined with the Bethe-Salpeter equation (GW/BSE). The calculated excitation energies are benchmarked against the periodic GW/BSE values, equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) results, and experiments. Both CC2-in-DFT and GW/BSE-in-DFT deliver excitation energies that are in good agreement with experimental values for several ionic solids (MgO, CaO, LiF, NaF, KF, and LiCl) while incurring negligible computational costs. Notably, GW/BSE-in-DFT exhibits remarkable accuracy with a mean absolute error (MAE) of just 0.38 eV with respect to experiments, demonstrating the effectiveness of the embedding strategy. In addition, the versatility of the method is highlighted by investigating the optical gap of a 2D MgCl2 system and the excitation energy of an oxygen vacancy in MgO, with results in good agreement with reported values.
Collapse
Affiliation(s)
| | - Marek Sierka
- Otto Schott Institute of
Materials Research, Friedrich Schiller Unversity
Jena, Löbdergraben 32, 07743 Jena, Germany
| |
Collapse
|
2
|
Mitra A, D'Cunha R, Wang Q, Hermes MR, Alexeev Y, Gray SK, Otten M, Gagliardi L. The Localized Active Space Method with Unitary Selective Coupled Cluster. J Chem Theory Comput 2024. [PMID: 39256901 DOI: 10.1021/acs.jctc.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We introduce a hybrid quantum-classical algorithm, the localized active space unitary selective coupled cluster singles and doubles (LAS-USCCSD) method. Derived from the localized active space unitary coupled cluster (LAS-UCCSD) method, LAS-USCCSD first performs a classical LASSCF calculation, then selectively identifies the most important parameters (cluster amplitudes used to build the multireference UCC ansatz) for restoring interfragment interaction energy using this reduced set of parameters with the variational quantum eigensolver method. We benchmark LAS-USCCSD against LAS-UCCSD by calculating the total energies of (H2)2, (H2)4, and trans-butadiene, and the magnetic coupling constant for a bimetallic compound [Cr2(OH)3(NH3)6]3+. For these systems, we find that LAS-USCCSD reduces the number of required parameters and thus the circuit depth by at least 1 order of magnitude, an aspect which is important for the practical implementation of multireference hybrid quantum-classical algorithms like LAS-UCCSD on near-term quantum computers.
Collapse
Affiliation(s)
- Abhishek Mitra
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ruhee D'Cunha
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Qiaohong Wang
- Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R Hermes
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuri Alexeev
- Computational Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Stephen K Gray
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Matthew Otten
- Department of Physics, University of Wisconsin - Madison, Madison, Wisconsin 53726, United States
| | - Laura Gagliardi
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Computational Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Li J, Jin Y, Yu J, Yang W, Zhu T. Accurate Excitation Energies of Point Defects from Fast Particle-Particle Random Phase Approximation Calculations. J Phys Chem Lett 2024:2757-2764. [PMID: 38436573 DOI: 10.1021/acs.jpclett.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We present an efficient particle-particle random phase approximation (ppRPA) approach that predicts accurate excitation energies of point defects, including the nitrogen-vacancy (NV-) and silicon-vacancy (SiV0) centers in diamond and the divacancy center (VV0) in 4H silicon carbide, with errors of ±0.2 eV compared with experimental values. Starting from the (N + 2)-electron ground state calculated with density functional theory (DFT), the ppRPA excitation energies of the N-electron system are calculated as the differences between the two-electron removal energies of the (N + 2)-electron system. We demonstrate that the ppRPA excitation energies converge rapidly with a few hundred canonical active-space orbitals. We also show that active-space ppRPA has weak DFT starting-point dependence and is significantly cheaper than the corresponding ground-state DFT calculation. This work establishes ppRPA as an accurate and low-cost tool for investigating excited-state properties of point defects and opens up new opportunities for applications of ppRPA to periodic bulk materials.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yu Jin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jincheng Yu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tianyu Zhu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Jin Y, Yu VWZ, Govoni M, Xu AC, Galli G. Excited State Properties of Point Defects in Semiconductors and Insulators Investigated with Time-Dependent Density Functional Theory. J Chem Theory Comput 2023. [PMID: 38039161 DOI: 10.1021/acs.jctc.3c00986] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
We present a formulation of spin-conserving and spin-flip hybrid time-dependent density functional theory (TDDFT), including the calculation of analytical forces, which allows for efficient calculations of excited state properties of solid-state systems with hundreds to thousands of atoms. We discuss an implementation on both GPU- and CPU-based architectures along with several acceleration techniques. We then apply our formulation to the study of several point defects in semiconductors and insulators, specifically the negatively charged nitrogen-vacancy and neutral silicon-vacancy centers in diamond, the neutral divacancy center in 4H silicon carbide, and the neutral oxygen-vacancy center in magnesium oxide. Our results highlight the importance of taking into account structural relaxations in excited states in order to interpret and predict optical absorption and emission mechanisms in spin defects.
Collapse
Affiliation(s)
- Yu Jin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Victor Wen-Zhe Yu
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marco Govoni
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, Computer Science, and Mathematics, University of Modena and Reggio Emilia, Modena 41125, Italy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew C Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Giulia Galli
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|