1
|
Glaser T, Adamkiewicz A, Heep J, Höfer U, Dürr M. Chemoselective Adsorption of Allyl Ethers on Si(001): How the Interaction between Two Functional Groups Controls the Reactivity and Final Products of a Surface Reaction. J Phys Chem Lett 2024; 15:7168-7174. [PMID: 38967830 DOI: 10.1021/acs.jpclett.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Selective adsorption of multifunctional molecules is rarely observed when the different functional groups react via nonactivated reaction channels. Although the latter is also the case for ether cleavage and the adsorption of C=C double bonds on the highly reactive Si(001) surface, we find that allyl ethers, which combine both functional groups, react on Si(001) selectively via the cleavage of the molecules' ether group. In addition, our XPS measurements at 90, 150, and 300 K indicate an increased reactivity of the ether group when compared to monofunctional ethers. STM investigations furthermore reveal different final adsorption configurations after ether cleavage of allyl methyl ether when compared to diethyl ether as the monofunctional reference molecule. The interaction of the two functional groups in one molecule thus leads to new reaction channels with higher reactivity for ether cleavage on Si(001). As a further consequence, the reactivity of the C=C double bond is suppressed up to room temperature, leading to the observed selective adsorption.
Collapse
Affiliation(s)
- Timo Glaser
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| | - Alexa Adamkiewicz
- Fachbereich Physik and Zentrum für Materialwissenschaften, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Julian Heep
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| | - Ulrich Höfer
- Fachbereich Physik and Zentrum für Materialwissenschaften, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Michael Dürr
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| |
Collapse
|
2
|
Glaser T, Meinecke J, Länger C, Luy JN, Tonner R, Koert U, Dürr M. Combined XPS and DFT investigation of the adsorption modes of methyl enol ether functionalized cyclooctyne on Si(001). Chemphyschem 2021; 22:404-409. [PMID: 33259128 PMCID: PMC7986196 DOI: 10.1002/cphc.202000870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/25/2020] [Indexed: 11/17/2022]
Abstract
The reaction of methyl enol ether functionalized cyclooctyne on the silicon (001) surface was investigated by means of X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT). Three different groups of final states were identified; all of them bind on Si(001) via the strained triple bond of cyclooctyne but they differ in the configuration of the methyl enol ether group. The majority of molecules adsorbs without additional reaction of the enol ether group; the relative contribution of this configuration to the total coverage depends on substrate temperature and coverage. Further configurations include enol ether groups which reacted on the silicon surface either via ether cleavage or enol ether groups which transformed on the surface into a carbonyl group.
Collapse
Affiliation(s)
- Timo Glaser
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Jannick Meinecke
- Fachbereich Chemie, Philipps-Universität, Marburg, Hans-Meerwein-Straße 4, D-35032, Germany
| | - Christian Länger
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Jan-Niclas Luy
- Fachbereich Chemie, Philipps-Universität, Marburg, Hans-Meerwein-Straße 4, D-35032, Germany.,Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.,Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, D-04103, Leipzig, Germany
| | - Ralf Tonner
- Fachbereich Chemie, Philipps-Universität, Marburg, Hans-Meerwein-Straße 4, D-35032, Germany.,Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.,Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, D-04103, Leipzig, Germany
| | - Ulrich Koert
- Fachbereich Chemie, Philipps-Universität, Marburg, Hans-Meerwein-Straße 4, D-35032, Germany
| | - Michael Dürr
- Institut für Angewandte Physik and Zentrum für Materialforschung, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| |
Collapse
|
3
|
Smith CE, Xie Z, Bâldea I, Frisbie CD. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers. NANOSCALE 2018; 10:964-975. [PMID: 29192925 DOI: 10.1039/c7nr06461f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conducting probe atomic force microscopy (CP-AFM) was employed to examine electron tunneling in self-assembled monolayer (SAM) junctions. A 2.3 nm long perylene tetracarboxylic acid diimide (PDI) acceptor molecule equipped with isocyanide linker groups was synthesized, adsorbed onto Ag, Au and Pt substrates, and the current-voltage (I-V) properties were measured by CP-AFM. The dependence of the low-bias resistance (R) on contact work function indicates that transport is LUMO-assisted ('n-type behavior'). A single-level tunneling model combined with transition voltage spectroscopy (TVS) was employed to analyze the experimental I-V curves and to extract the effective LUMO position εl = ELUMO - EF and the effective electronic coupling (Γ) between the PDI redox core and the contacts. This analysis revealed a strong Fermi level (EF) pinning effect in all the junctions, likely due to interface dipoles that significantly increased with increasing contact work function, as revealed by scanning Kelvin probe microscopy (SKPM). Furthermore, the temperature (T) dependence of R was found to be substantial. For Pt/Pt junctions, R varied more than two orders of magnitude in the range 248 K < T < 338 K. Importantly, the R(T) data are consistent with a single step electron tunneling mechanism and allow independent determination of εl, giving values compatible with estimates of εl based on analysis of the full I-V data. Theoretical analysis revealed a general criterion to unambiguously rule out a two-step transport mechanism: namely, if measured resistance data exhibit a pronounced Arrhenius-type temperature dependence, a two-step electron transfer scenario should be excluded in cases where the activation energy depends on contact metallurgy. Overall, our results indicate (1) the generality of the Fermi level pinning phenomenon in molecular junctions, (2) the utility of employing the single level tunneling model for determining essential electronic structure parameters (εl and Γ), and (3) the importance of changing the nature of the contacts to verify transport mechanisms.
Collapse
Affiliation(s)
- Christopher E Smith
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
4
|
Sandoval TE, Bent SF. Adsorption of Homotrifunctional 1,2,3-Benzenetriol on a Ge(100)-2 × 1 Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8716-8723. [PMID: 28574269 DOI: 10.1021/acs.langmuir.7b00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The adsorption of the homotrifunctional 1,2,3-benzenetriol on Ge(100)-2 × 1 has been investigated by density functional theory calculations, Fourier transform infrared spectroscopy, and X-ray-photoelectron spectroscopy. The results show that the adsorption can occur through OH dissociation of all three hydroxyl groups, and that all three reaction pathways are kinetically and thermodynamically favorable. A coverage-dependent analysis shows that at low coverage, the molecule reacts to form a mix of trifold and dually bound adsorbates. As the coverage increases, the reactions are limited to dissociative adsorption through single and dual attachments. Calculations on the three possible dually bound configurations further reveals that the dissociative adsorption of the third hydroxyl group is limited by geometrical constraints to only two reaction channels. Finally, the proximity between OH-groups in the molecule favors intra- and intermolecular hydrogen bonding, which stabilizes singly and dually bound adsorbate configurations and limits the reactivity of the functional groups.
Collapse
Affiliation(s)
- Tania E Sandoval
- Department of Chemical Engineering, Stanford University , 443 Via Ortega, Stanford, California 94305, United States
| | - Stacey F Bent
- Department of Chemical Engineering, Stanford University , 443 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
5
|
Shong B, Yoo JS, Sandoval TE, Bent SF. Formation of Germa-ketenimine on the Ge(100) Surface by Adsorption of tert-Butyl Isocyanide. J Am Chem Soc 2017; 139:8758-8765. [PMID: 28560877 DOI: 10.1021/jacs.7b04755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of the (100) surfaces of Ge and Si with organic molecules have been generally understood within the concept of "dimers" formed by the 2 × 1 surface reconstruction. In this work, the adsorption of tert-butyl isocyanide on the Ge(100)-2 × 1 surface at large exposures is investigated under ultrahigh vacuum conditions. A combination of infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption experiments along with dispersion-corrected density functional theory calculations is used to determine the surface products. Upon adsorption of a dense monolayer of tert-butyl isocyanide, a product whose structure resembles a germa-ketenimine (N=C=Ge) with σ donation toward and π back-donation from the Ge(100) surface appears. Formation of this structure involves divalent-type surface Ge atoms that arise from cleavage of the Ge(100)-2 × 1 surface dimers. Our results reveal an unprecedented class of reactions of organic molecules at the Ge(100) surface.
Collapse
Affiliation(s)
- Bonggeun Shong
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States.,Department of Chemistry, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| | - Tania E Sandoval
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Stacey F Bent
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
6
|
Tashkandi NY, Cook EE, Bourque JL, Baines KM. Addition of Isocyanides to Tetramesityldigermene: A Comparison of the Reactivity between Surface and Molecular Digermenes. Chemistry 2016; 22:14006-14012. [PMID: 27529452 DOI: 10.1002/chem.201602222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 11/10/2022]
Abstract
The reaction of benzyl isocyanide, tert-butyl isocyanide, and 2,6-dimethylphenyl isocyanide with tetramesityldigermene (Mes2 Ge=GeMes2 ) was examined. Whereas the addition of benzyl isocyanide gave the C-NC activation product, Mes2 Ge(CH2 Ph)Ge(CN)Mes2 , tert-butyl isocyanide, and 2,6-dimethylphenyl isocyanide did not give stable adducts, rather the rate of conversion of the digermene to the corresponding cyclotrigermane was accelerated. A comparison between the reactivity of the isocyanides with Mes2 Ge=GeMes2 and the Ge(100)-2×1 surface was made and some insights into the surface chemistry are offered.
Collapse
Affiliation(s)
- Nada Y Tashkandi
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Emily E Cook
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Jeremy L Bourque
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Kim M Baines
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|