1
|
Kaur K, Sahu BK, Swami K, Chandel M, Gupta A, Zhu LH, Youngblood JP, Kanagarajan S, Shanmugam V. Phone Camera Nano-Biosensor Using Mighty Sensitive Transparent Reusable Upconversion Paper. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27507-27514. [PMID: 35667027 DOI: 10.1021/acsami.2c06894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lycopene, a natural colorant and antioxidant with a huge growing market, is highly susceptible to photo/thermal degradation, which demands real-time sensors. Hence, here a transparent upconversion nanoparticles (UCNPs) strip having 30 mol % Yb, 0.1 mol % Tm, and β-NaYF4 UCNPs, which shows an intense emission at 475 nm, has been developed. This strip has been found to be sensitive to lycopene with a detection limit as low as 10 nM using a smartphone camera, which is due to static quenching that is confirmed by the lifetime study. In comparison to previous paper strips, here the transparent strip has minimal scattering with maximum sensitivity in spite of not using any metal quenchers. An increase in strip hydrophobicity during the fabrication process complements the strip to selectively permeate and present an extraction-free substitute analysis for chromatography. Hydrophobicity endows the strip with the capability to reuse the strip with ∼100% luminescence recovery.
Collapse
Affiliation(s)
- Kamaljit Kaur
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Bandana Kumari Sahu
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Kanchan Swami
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Mahima Chandel
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Anshika Gupta
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Jeffrey P Youngblood
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Pilch-Wrobel A, Kotulska AM, Lahtinen S, Soukka T, Bednarkiewicz A. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200464. [PMID: 35355389 DOI: 10.1002/smll.202200464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio-imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo-bleaching, spectral cross-excitation, and emission bleed-through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay-based analysis of D-A interaction. In this work, the assessment of designed virtual core-shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy-transfer and energy migration between lanthanide ion dopants and how the architecture of core-shell UCNPs affects their performance as FRET donors to organic acceptor dyes.
Collapse
Affiliation(s)
- Aleksandra Pilch-Wrobel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Agata Maria Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| |
Collapse
|
3
|
Ren J, Ding Y, Zhu H, Li Z, Hong X, Zhao H, Zhang H. Improving acceptor efficacy rather than energy transfer efficiency: Dominant contribution of monomers of acceptors modified on upconversion nanoparticles. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Bazylińska U, Wawrzyńczyk D, Kulbacka J, Picci G, Manni LS, Handschin S, Fornasier M, Caltagirone C, Mezzenga R, Murgia S. Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy. ACS NANO 2022; 16:5427-5438. [PMID: 35333516 PMCID: PMC9047672 DOI: 10.1021/acsnano.1c09367] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/21/2022] [Indexed: 05/29/2023]
Abstract
In recent years, lipid bicontinuous cubic liquid-crystalline nanoparticles known as cubosomes have been under investigation because of their favorable properties as drug nanocarriers useful for anticancer treatments. Herein, we present organic/inorganic hybrid, theranostic cubosomes stabilized in water with a shell of alternate layers of chitosan, single strand DNA (model genetic material for potential gene therapy), and folic acid-chitosan conjugate (the outmost layer), coencapsulating up-converting Er3+ and Yb3+ codoped NaYF4 nanoparticles and daunorubicin. The latter acts as a chemotherapeutic drug of photosensitizing activity, while up-converting nanoparticles serve as energy harvester and diagnostic agent. Cellular uptake and NIR-induced photodynamic therapy were evaluated in vitro against human skin melanoma (MeWo) and ovarian (SKOV-3) cancer cells. Results evidenced the preferential uptake of the theranostic cubosomes in SKOV-3 cells in comparison to uptake in MeWo cells, and this effect was enhanced by the folic acid functionalization of the cubosomes surface. Nanocarriers coloaded with the hybrid fluorophores exhibited a superior NIR-induced photodynamic activity, also confirmed by the improved mitochondrial activity and the most affecting f-actin fibers of cytoskeleton. Similar results, but with higher photocytotoxicity, were detected when folic acid-functionalized cubosomes were incubated with SKOV-3 cells. Taken on the whole, these results prove these hybrid cubosomes are good candidates for the photodynamic treatment of tumor lesions.
Collapse
Affiliation(s)
- Urszula Bazylińska
- Department
of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Dominika Wawrzyńczyk
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Julita Kulbacka
- Department
of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Giacomo Picci
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
| | - Livia Salvati Manni
- School
of Medical Sciences, School of Chemistry and University of Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- ETH
Zurich Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich 8093, Switzerland
| | - Stephan Handschin
- ETH
Zurich Scientific Center for Optical and Electron Microscopy (ScopeM), Otto-Stern-Weg 3, Zurich 8093, Switzerland
| | - Marco Fornasier
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
- Department
of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Claudia Caltagirone
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
| | - Raffaele Mezzenga
- ETH
Zurich Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich 8093, Switzerland
- ETH
Zurich
Department of Materials, Wolfgang-Pauli-Strasse 10, Zurich 8093, Switzerland
| | - Sergio Murgia
- Department
of Life and Environmental Sciences, University
of Cagliari and CSGI, via Ospedale 72, I-09124 Cagliari, Italy
| |
Collapse
|
5
|
Study of energy transfer processes between rare earth ions and photosensitizer molecules for photodynamic therapy with IR-excitation. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2021-10-4-23-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Today, photodynamic therapy is one of the most promising minimally invasive methods of treatment of various diseases, including cancer. The main limitation of this method is the insufficient penetration into the tissue of laser radiation used to activate photosensitizer molecules, which makes it difficult to carry out therapy in the treatment of large or deep-seated tumors. In this regard, there is a great interest in the development of new strategies for photodynamic therapy using infrared radiation for excitation, the wavelengths of which fall into the “transparency window” of biological tissues. In this work, it was proposed to use upconversion NaGdF4 :Yb:Er nanoparticles (UCNP), which absorb infrared excitation and serve as a donor that transfers energy to the photosensitizer. Photosens and phthalosens were chosen as the most promising photosensitizers for the study. The aim of this work was to study the energy transfer processes between upconversion nanoparticles doped with rare-earth ions and photosensitizer molecules. in order to excite photosensitizers with IR radiation and carry out photodynamic therapy of deep-seated neoplasms. Using spectroscopic and time-resolved methods, it has been demonstrated that there is an efficient energy transfer between upconversion particles and photosensitizers phthalosens and photosens. The calculated efficiency of energy transfer by the Foerster mechanism was 41% for the UCNP + photosens system and 69% for the UCNP + phthalosens system. It has been experimentally and theoretically proved that there is a binding of photosensitizer molecules with UCNP by means of surfactants, leading to a reduction in the distance between them, due to which effective nonradiative energy transfer is realized. The generation of singlet oxygen by the phthalosens photosensitizer upon excitation by means of energy transfer from UCNP, excited at 980 nm wavelength of, has been demonstrated.
Collapse
|
6
|
Bujjamer JM, Illescas M, Marchi MC, Grecco HE, Barja BC. A first approach to the use of upconversion nanoparticles to measure fluorescent tracers in water: a proof of concept. Methods Appl Fluoresc 2021; 9. [PMID: 34633297 DOI: 10.1088/2050-6120/ac2e99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
In this work we use lanthanide based NaYF4:Er3+, Yb3+upconversion nanoparticles (UCNP) to detect ppb-level sensitibity of a xanthene dye, Rhodamine B (RB) dye, under NIR excitation. A static energy transfer was observed between the luminescent UCNP energy donors and RB acceptor in aqueous solution for three different sizes of UCNP. No specific covalent functionalization of the UCNPs was performed providing a direct method of detection, particularly promising in natural systems where the interfering fluorescence background is a detrimental limitation to the performance of the detection method. This procedure is a first approach to be applied in estuarine and coastal zone where the high content of suspended particulate matter prevents the detection of tracers.
Collapse
Affiliation(s)
- Juan M Bujjamer
- Departamento de Física, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón 1, C1428EHA Buenos Aires, Argentina
| | - Marcos Illescas
- Departamento de Química Inorgánica, Analítica y Química Física, FCEN, UBA, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - M Claudia Marchi
- Departamento de Química Inorgánica, Analítica y Química Física, FCEN, UBA, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.,Instituto de Física de Buenos Aires-CONICET, Ciudad Universitaria, Pab. 1, C1428EHA Buenos Aires, Argentina
| | - Hernán E Grecco
- Departamento de Física, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón 1, C1428EHA Buenos Aires, Argentina.,Instituto de Física de Buenos Aires-CONICET, Ciudad Universitaria, Pab. 1, C1428EHA Buenos Aires, Argentina
| | - Beatriz C Barja
- Departamento de Química Inorgánica, Analítica y Química Física, FCEN, UBA, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.,INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
7
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
8
|
Meijer M, Natile MM, Bonnet S. 796 nm Activation of a Photocleavable Ruthenium(II) Complex Conjugated to an Upconverting Nanoparticle through Two Phosphonate Groups. Inorg Chem 2020; 59:14807-14818. [PMID: 32167752 PMCID: PMC7581297 DOI: 10.1021/acs.inorgchem.0c00043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/28/2022]
Abstract
The biological application of photoactivatable ruthenium anticancer prodrugs is limited by the need to use poorly penetrating high-energy visible light for their activation. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, can solve this issue, provided that they form stable, water (H2O)-dispersible nanoconjugates with the prodrug and that there is efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the ruthenium(II) polypyridyl complex [Ru(bpy)2(3H)](PF6)2 ([1](PF6)2), where bpy = 2,2-bipyridine and 3H is a photocleavable bis(thioether) ligand modified with two phosphonate moieties. This ligand was coordinated to the ruthenium center through its thioether groups and could be dissociated under blue-light irradiation. Complex [1](PF6)2 was bound to the surface of NaYF4:Yb3+,Tm3+@NaYF4:Nd3+@NaYF4 core-shell-shell (CSS-)UCNPs through its bis(phosphonate) group, thereby creating a H2O-dispersible, thermally stable nanoconjugate (CSS-UCNP@[1]). Conjugation to the nanoparticle surface was found to be most efficient in neutral to slightly basic conditions, resulting in up to 2.4 × 103 RuII ions per UCNP. The incorporation of a neodymium-doped shell layer allowed for the generation of blue light using low-energy, deep-penetrating light (796 nm). This wavelength prevents the undesired heating seen with conventional UCNPs activated at 980 nm. Irradiation of CSS-UCNP@[1] with NIR light led to activation of the ruthenium complex [1](PF6)2. Although only one of the two thioether groups was dissociated under irradiation at 50 W·cm-2, we provide the first demonstration of the photoactivation of a ruthenium thioether complex using 796 nm irradiation of a H2O-dispersible nanoconjugate.
Collapse
Affiliation(s)
- Michael
S. Meijer
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Marta M. Natile
- Institute
of Condensed Matter Chemistry and Technologies for Energy, National
Research Council (CNR), Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
9
|
Lin SL, Chen HC, Chang CA. Enhancing Förster Resonance Energy Transfer (FRET) Efficiency of Titania-Lanthanide Hybrid Upconversion Nanomaterials by Shortening the Donor-Acceptor Distance. NANOMATERIALS 2020; 10:nano10102035. [PMID: 33076441 PMCID: PMC7602594 DOI: 10.3390/nano10102035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Several robust titania (TiO2) coated core/multishell trivalent lanthanide (Ln) upconversion nanoparticles (UCNPs) hybrid architecture designs have been reported for use in photodynamic therapy (PDT) against cancer, utilizing the near-infrared (NIR) excited energy down-shifting and up-conversion chain of Nd3+ (λ793-808 nm) → Yb3+ (λ980 nm) → Tm3+(λ475 nm) → TiO2 to produce reactive oxygen species (ROS) for deep tissue-penetrating oxidative cytotoxicity, e.g., NaLnF4:Yb,Tm (Ln = Y, Gd). Herein, we demonstrate that by doping the Tm3+ emitter ions in the outer shell and the Nd3+ sensitizer ions in the core, the newly designed NaYF4:Nd,Yb@Yb@Yb,Tm@TiO2 hybrid UCNPs exert more ROS production than the reference NaYF4:Yb,Tm@Yb@Nd,Yb@ TiO2 with the Tm3+ ions in the core and the Nd3+ ions in the outer shell, upon 793 nm laser irradiation, primarily due to the shortening of the Tm3+-TiO2 distance of the former with greater Förster resonance energy transfer (FRET) efficiency. After coating with polyallylamine hydrochloride (PAH)/polyethylene glycol folate (PEG-FA), the resulting NaYF4:Nd,Yb@Yb@Yb,Tm@TiO2-PAH-PEG-FA hybrid nanocomposites could be internalized in MDA-MB-231 cancer cells, which also show low dark cytotoxicity and effective photocytotoxicity upon 793 nm excitation. These nanocomposites could be further optimized and are potentially good candidates as nanotheranostics, as well as for other light-conversion applications.
Collapse
Affiliation(s)
- Syue-Liang Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 112, Taiwan
- Biomedical Engineering Research and Development Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (S.-L.L.); (C.A.C.)
| | - Han-Chun Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan;
| | - Cheng Allen Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Biomedical Engineering Research and Development Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (S.-L.L.); (C.A.C.)
| |
Collapse
|
10
|
Bednarkiewicz A, Chan EM, Prorok K. Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles. NANOSCALE ADVANCES 2020; 2:4863-4872. [PMID: 36132913 PMCID: PMC9417941 DOI: 10.1039/d0na00404a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/12/2020] [Indexed: 05/24/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between donor (D) and acceptor (A) molecules is a phenomenon commonly exploited to study or visualize biological interactions at the molecular level. However, commonly used organic D and A molecules often suffer from photobleaching and spectral bleed-through, and their spectral properties hinder quantitative analysis. Lanthanide-doped upconverting nanoparticles (UCNPs) as alternative D species offer significant improvements in terms of photostability, spectral purity and background-free luminescence detection, but they bring new challenges related to multiple donor ions existing in a single large size UCNP and the need for nanoparticle biofunctionalization. Considering the relatively short Förster distance (typically below 5-7 nm), it becomes a non-trivial task to assure sufficiently strong D-A interaction, which translates directly to the sensitivity of such bio-sensors. In this work we propose a solution to these issues, which employs the photon avalanche (PA) phenomenon in lanthanide-doped materials. Using theoretical modelling, we predict that these PA systems would be highly susceptible to the presence of A and that the estimated sensitivity range extends to distances 2 to 4 times longer (i.e. 10-25 nm) than those typically found in conventional FRET systems. This promises high sensitivity, low background and spectral or temporal biosensing, and provides the basis for a radically novel approach to combine luminescence imaging and self-normalized bio-molecular interaction sensing.
Collapse
Affiliation(s)
- Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okolna 2 50-422 Wroclaw Poland
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Katarzyna Prorok
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okolna 2 50-422 Wroclaw Poland
| |
Collapse
|
11
|
Wang K, Ni R, Xing X, Wen X, Liu J, Ding Y, Hong X. Upconversion luminescence–infrared absorption nanoprobes for the detection of prostate-specific antigen. Mikrochim Acta 2020; 187:516. [DOI: 10.1007/s00604-020-04504-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
|
12
|
Mendez-Gonzalez D, Calderón OG, Melle S, González-Izquierdo J, Bañares L, López-Díaz D, Velázquez MM, López-Cabarcos E, Rubio-Retama J, Laurenti M. Contribution of resonance energy transfer to the luminescence quenching of upconversion nanoparticles with graphene oxide. J Colloid Interface Sci 2020; 575:119-129. [PMID: 32361044 DOI: 10.1016/j.jcis.2020.04.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
Abstract
Upconversion nanoparticles (UCNP) are increasingly used due to their advantages over conventional fluorophores, and their use as resonance energy transfer (RET) donors has permitted their application as biosensors when they are combined with appropriate RET acceptors such as graphene oxide (GO). However, there is a lack of knowledge about the design and influence that GO composition produces over the quenching of these nanoparticles that in turn will define their performance as sensors. In this work, we have analysed the total quenching efficiency, as well as the actual values corresponding to the RET process between UCNPs and GO sheets with three different chemical compositions. Our findings indicate that excitation and emission absorption by GO sheets are the major contributor to the observed luminescence quenching in these systems. This challenges the general assumption that UCNPs luminescence deactivation by GO is caused by RET. Furthermore, RET efficiency has been theoretically calculated by means of a semiclassical model considering the different nonradiative energy transfer rates from each Er3+ ion to the GO thin film. These theoretical results highlight the relevance of the relative positions of the Er3+ ions inside the UCNP with respect to the GO sheet in order to explain the RET-induced efficiency measurements.
Collapse
Affiliation(s)
- Diego Mendez-Gonzalez
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Oscar G Calderón
- Departament of Optics, Universidad Complutense de Madrid, 28037 Madrid, Spain.
| | - Sonia Melle
- Departament of Optics, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Jesús González-Izquierdo
- Department of Physical Chemistry I and Center for Ultrafast Lasers, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Bañares
- Department of Physical Chemistry I and Center for Ultrafast Lasers, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David López-Díaz
- Department of Physical Chemistry, Universidad de Salamanca, 37008 Salamanca, Spain; Department of Analytical, Physical Chemistry and Chemical engineering, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - M Mercedes Velázquez
- Department of Physical Chemistry, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Enrique López-Cabarcos
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Marco Laurenti
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Inés de la Cruz, Cantoblanco 28049, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| |
Collapse
|
13
|
Francés-Soriano L, Peruffo N, Natile MM, Hildebrandt N. Er3+-to-dye energy transfer in DNA-coated core and core/shell/shell upconverting nanoparticles with 980 nm and 808 nm excitation of Yb3+ and Nd3+. Analyst 2020; 145:2543-2553. [DOI: 10.1039/c9an02532d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
FRET from upconversion nanoparticles to dyes using 980 nm and 808 nm excitation.
Collapse
Affiliation(s)
- Laura Francés-Soriano
- Institute for Integrative Biology of the Cell (I2BC)
- Université Paris-Saclay
- Université Paris-Sud
- CNRS
- CEA
| | - Nicola Peruffo
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE)
- National Research Council (CNR) and Department of Chemical Sciences
- University of Padova
- 35131 Padova PD
- Italy
| | - Marta Maria Natile
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE)
- National Research Council (CNR) and Department of Chemical Sciences
- University of Padova
- 35131 Padova PD
- Italy
| | - Niko Hildebrandt
- Institute for Integrative Biology of the Cell (I2BC)
- Université Paris-Saclay
- Université Paris-Sud
- CNRS
- CEA
| |
Collapse
|
14
|
Siefe C, Mehlenbacher RD, Peng CS, Zhang Y, Fischer S, Lay A, McLellan CA, Alivisatos AP, Chu S, Dionne JA. Sub-20 nm Core-Shell-Shell Nanoparticles for Bright Upconversion and Enhanced Förster Resonant Energy Transfer. J Am Chem Soc 2019; 141:16997-17005. [PMID: 31592655 PMCID: PMC8259630 DOI: 10.1021/jacs.9b09571] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Upconverting nanoparticles provide valuable benefits as optical probes for bioimaging and Förster resonant energy transfer (FRET) due to their high signal-to-noise ratio, photostability, and biocompatibility; yet, making nanoparticles small yields a significant decay in brightness due to increased surface quenching. Approaches to improve the brightness of UCNPs exist but often require increased nanoparticle size. Here we present a unique core-shell-shell nanoparticle architecture for small (sub-20 nm), bright upconversion with several key features: (1) maximal sensitizer concentration in the core for high near-infrared absorption, (2) efficient energy transfer between core and interior shell for strong emission, and (3) emitter localization near the nanoparticle surface for efficient FRET. This architecture consists of β-NaYbF4 (core) @NaY0.8-xErxGd0.2F4 (interior shell) @NaY0.8Gd0.2F4 (exterior shell), where sensitizer and emitter ions are partitioned into core and interior shell, respectively. Emitter concentration is varied (x = 1, 2, 5, 10, 20, 50, and 80%) to investigate influence on single particle brightness, upconversion quantum yield, decay lifetimes, and FRET coupling. We compare these seven samples with the field-standard core-shell architecture of β-NaY0.58Gd0.2Yb0.2Er0.02F4 (core) @NaY0.8Gd0.2F4 (shell), with sensitizer and emitter ions codoped in the core. At a single particle level, the core-shell-shell design was up to 2-fold brighter than the standard core-shell design. Further, by coupling a fluorescent dye to the surface of the two different architectures, we demonstrated up to 8-fold improved emission enhancement with the core-shell-shell compared to the core-shell design. We show how, given proper consideration for emitter concentration, we can design a unique nanoparticle architecture to yield comparable or improved brightness and FRET coupling within a small volume.
Collapse
Affiliation(s)
- Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Randy D. Mehlenbacher
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Alice Lay
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Claire A. McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Ding Y, Hong X, Liu Y, Zhang H. Recent Advances in Magnetic Upconversion Nanocomposites for Bioapplications. Curr Pharm Des 2019; 25:2007-2015. [PMID: 31566123 DOI: 10.2174/1381612825666190708202403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
The combination of magnetism and upconversion luminescent property into one single nanostructure is fascinating for biological fields, such as multimodal bioimaging, targeted drug delivery, and imaging-guided therapy. In this review, we will provide the state-of-the-art advances on magnetic upconversion nanocomposites towards their bioapplications. Their structure design, synthesis methods, surface engineering and applications in bioimaging, drug delivery, therapy as well as biodetection will be covered.
Collapse
Affiliation(s)
- Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun 130024, China.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun 130024, China.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun 130024, China
| | - Hong Zhang
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
16
|
Meijer M, Talens VS, Hilbers M, Kieltyka RE, Brouwer AM, Natile MM, Bonnet S. NIR-Light-Driven Generation of Reactive Oxygen Species Using Ru(II)-Decorated Lipid-Encapsulated Upconverting Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12079-12090. [PMID: 31389710 PMCID: PMC6753655 DOI: 10.1021/acs.langmuir.9b01318] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The biological application of ruthenium anticancer prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) is restricted by the need to use poorly penetrating high-energy photons for their activation, i.e., typically blue or green light. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, may solve this issue, provided that the coupling between the UCNP surface and the Ru prodrug is optimized to produce stable nanoconjugates with efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the two structurally related ruthenium(II) polypyridyl complexes [Ru(bpy)2(5)](PF6)2 ([1](PF6)2) and [Ru(bpy)2(6)](PF6)2 ([2](PF6)2), where bpy = 2,2-bipyridine, 5 is 5,6-bis(dodecyloxy)-2,9-dimethyl-1,10-phenanthroline, and 6 is 5,6-bis(dodecyloxy)-1,10-phenanthroline. [1](PF6)2 is photolabile as a result of the steric strain induced by ligand 5, but the irradiation of [1](PF6)2 in solution leads to the nonselective and slow photosubstitution of one of its three ligands, making it a poor PACT compound. On the other hand, [2](PF6)2 is an efficient and photostable PDT photosensitizer. The water-dispersible, negatively charged nanoconjugate UCNP@lipid/[2] was prepared by the encapsulation of 44 nm diameter NaYF4:Yb3+,Tm3+ UCNPs in a mixture of 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycero-3-phosphocholine phospholipids, cholesterol, and the amphiphilic complex [2](PF6)2. A nonradiative energy transfer efficiency of 12% between the Tm3+ ions in the UCNP and the Ru2+ acceptor [2]2+ was found using time-resolved emission spectroscopy. Under irradiation with NIR light (969 nm), UCNP@lipid/[2] was found to produce reactive oxygen species (ROS), as judged by the oxidation of the nonspecific ROS probe 2',7'-dichlorodihydrofluorescein (DCFH2-). Determination of the type of ROS produced was precluded by the negative surface charge of the nanoconjugate, which resulted in the electrostatic repulsion of the more specific but also negatively charged 1O2 probe tetrasodium 9,10-anthracenediyl-bis(methylene)dimalonate (Na4(ADMBMA)).
Collapse
Affiliation(s)
- Michael
S. Meijer
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Victorio Saez Talens
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Michiel
F. Hilbers
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Roxanne E. Kieltyka
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Albert M. Brouwer
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Marta M. Natile
- Institute
of Condensed Matter Chemistry and Technologies for Energy (ICMATE),
National Research Council (CNR), c/o Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy
- E-mail: (M.M.N.)
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- E-mail: (S.B.)
| |
Collapse
|
17
|
Tsai ES, Himmelstoß SF, Wiesholler LM, Hirsch T, Hall EAH. Upconversion nanoparticles for sensing pH. Analyst 2019; 144:5547-5557. [PMID: 31403643 DOI: 10.1039/c9an00236g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Upconversion nanoparticles (UCNPs) can provide a vehicle for chemical imaging by coupling chemically sensitive dyes and quenchers. The mechanism for coupling of two anthraquinone dyes, Calcium Red and Alizarin Red S, was investigated as a function of pH. The green emission band of the UCNPs was quenched by a pH-dependent inner filter effect (IFE) while the red emission band remained unchanged and acted as the reference signal for ratiometric pH measurements. Contrary to previous expectation, there was little evidence for a resonance energy transfer (RET) mechanism even when the anthraquinones were attached onto the UCNPs through electrostatic attraction. Since the UCNPs are point emitters, only emitters close to the surface of the UCNP are within the expected Förster distance and UC-RET is <10%. The theoretical and experimental analysis of the interaction between UCNPs and pH-sensitive quenchers will allow the design of UCNP pH sensors for determination of pH via IFE.
Collapse
Affiliation(s)
- Evaline S Tsai
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | | | | | | | | |
Collapse
|
18
|
Andresen E, Resch-Genger U, Schäferling M. Surface Modifications for Photon-Upconversion-Based Energy-Transfer Nanoprobes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5093-5113. [PMID: 30870593 DOI: 10.1021/acs.langmuir.9b00238] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An emerging class of inorganic optical reporters are near-infrared (NIR) excitable lanthanide-based upconversion nanoparticles (UCNPs) with multicolor emission and long luminescence lifetimes in the range of several hundred microseconds. For the design of chemical sensors and optical probes that reveal analyte-specific changes in their spectroscopic properties, these nanomaterials must be combined with sensitive indicator dyes that change their absorption and/or fluorescence properties selectively upon interaction with their target analyte, utilizing either resonance energy transfer (RET) processes or reabsorption-related inner filter effects. The rational development of UCNP-based nanoprobes for chemical sensing and imaging in a biological environment requires reliable methods for the surface functionalization of UCNPs, the analysis and quantification of surface groups, a high colloidal stability of UCNPs in aqueous media as well as the chemically stable attachment of the indicator molecules, and suitable instrumentation for the spectroscopic characterization of the energy-transfer systems and the derived nanosensors. These topics are highlighted in the following feature article, and examples of functionalized core-shell nanoprobes for the sensing of different biologically relevant analytes in aqueous environments will be presented. Special emphasis is placed on the intracellular sensing of pH.
Collapse
Affiliation(s)
- Elina Andresen
- BAM Federal Institute of Materials Research and Testing, Biophotonics Division, Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany
| | - Ute Resch-Genger
- BAM Federal Institute of Materials Research and Testing, Biophotonics Division, Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Michael Schäferling
- Münster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39 , D-48565 Steinfurt , Germany
| |
Collapse
|
19
|
Feng M, Lv R, Xiao L, Hu B, Zhu S, He F, Yang P, Tian J. Highly Erbium-Doped Nanoplatform with Enhanced Red Emission for Dual-Modal Optical-Imaging-Guided Photodynamic Therapy. Inorg Chem 2018; 57:14594-14602. [DOI: 10.1021/acs.inorgchem.8b02257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Miao Feng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Liyang Xiao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Bo Hu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Labrador-Páez L, Ximendes EC, Rodríguez-Sevilla P, Ortgies DH, Rocha U, Jacinto C, Martín Rodríguez E, Haro-González P, Jaque D. Core-shell rare-earth-doped nanostructures in biomedicine. NANOSCALE 2018; 10:12935-12956. [PMID: 29953157 DOI: 10.1039/c8nr02307g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The current status of the use of core-shell rare-earth-doped nanoparticles in biomedical applications is reviewed in detail. The different core-shell rare-earth-doped nanoparticles developed so far are described and the most relevant examples of their application in imaging, sensing, and therapy are summarized. In addition, the advantages and disadvantages they present are discussed. Finally, a critical opinion of their potential application in real life biomedicine is given.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Q, Li X, Zhang L, Zuo J, Zhang Y, Liu X, Tu L, Xue B, Chang Y, Kong X. An 800 nm driven NaErF 4@NaLuF 4 upconversion platform for multimodality imaging and photodynamic therapy. NANOSCALE 2018; 10:12356-12363. [PMID: 29694473 DOI: 10.1039/c8nr00446c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multimodality imaging-guided therapy based on lanthanide-doped upconversion nanoparticles (UCNPs) has become a trend in cancer theranostics. However, the overheating effect of 980 nm excitation in photodynamic therapy (PDT) and the difficulties in optimizing multimodality imaging integration within a single particle are still challenges. Herein, 800 nm driven NaErF4@NaLuF4 UCNPs have been explored for optimized multimodality imaging and near-infrared (NIR) triggered PDT. Our results confirmed that the optimal ∼5 nm shell thickness can well balance the enhancement of upconversion luminescence and the attenuation of energy transfer efficiency from Er3+ towards a photosensitizer, to achieve efficient production of singlet oxygen (1O2) for PDT under 800 nm excitation. Furthermore, the as-obtained NaErF4@NaLuF4 UCNPs showed effective and applicable performance for upconversion luminescence (UCL) imaging, X-ray computed tomography (CT), and high-field T2 magnetic resonance imaging (MRI). This nanomaterial can serve as an excellent theranostic agent for multimodality imaging and image-guided therapy.
Collapse
Affiliation(s)
- Qiqing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shao H, Xu D, Ding Y, Hong X, Liu Y. An "off-on" colorimetric and fluorometric assay for Cu(II) based on the use of NaYF 4:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine. Mikrochim Acta 2018; 185:211. [PMID: 29594634 DOI: 10.1007/s00604-018-2740-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
The authors describe an "off-on" colorimetric and fluorometric assay for the determination of Cu(II). It is based on the use of upconversion nanoparticles (UCNPs) of type NaYF4:Yb(III),Er(III) that were functionalized with branched polyethylenimine (BPEI). A color change from colorless to blue occurs within 2 s after addition of Cu(II) to a solution of the modified UCNPs. The color change can be visually detected at Cu(II) concentrations down to 80 μM. The upconversion fluorescence of the modified UCNPs, measured at excitation wavelength of 980 nm, is reduced due to the predominant inner filter effect caused by the formation of the BPEI-Cu(II) complex. Normalized fluorescence intensity drops linearly in the 50 nM to 10 μM Cu(II) concentration range, and the fluorometric detection limit is 45 nM. Both the color and the fluorescence are recovered on addition of EDTA. Excellent selectivity over other metal ions and anions is achieved. Graphical abstract Upconversion nanoparticles of type NaYF4:Yb,Er were functionalized with branched polyethylenimine (UCNP/BPEI) and used in an "off-on" colorimetric and fluorometric assay for Cu(II). The upconversion fluorescence is selectively quenched on addition of Cu(II), and this is accompanied by a rapid colorless-to-blue color switch. The colorimetric changes and quenched fluorescence can be reversed by adding EDTA.
Collapse
Affiliation(s)
- Hong Shao
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Dan Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| |
Collapse
|
23
|
Huang K, Liu H, Kraft M, Shikha S, Zheng X, Ågren H, Würth C, Resch-Genger U, Zhang Y. A protected excitation-energy reservoir for efficient upconversion luminescence. NANOSCALE 2017; 10:250-259. [PMID: 29210408 DOI: 10.1039/c7nr06900f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) are of great interest for biomedical applications. Currently, the applicability of UCNP bionanotechnology is hampered by the generally low luminescence intensity of UCNPs and inefficient energy transfer from UCNPs to surface-bound chromophores used e.g. for photodynamic therapy or analyte sensing. In this work, we address the low-efficiency issue by developing versatile core-shell nanostructures, where high-concentration sensitizers and activators are confined in the core and shell region of representative hexagonal NaYF4:Yb,Er UCNPs. After doping concentration optimization, the sensitizer-rich core is able to harvest/accumulate more excitation energy and generate almost one order of magnitude higher luminescence intensity than conventional homogeneously doped nanostructures. At the same time, the activator ions located in the shell enable a ∼6 times more efficient resonant energy transfer from UCNPs to surface-bound acceptor dye molecules due to the short distance between donor-acceptor pairs. Our work provides new insights into the rational design of UCNPs and will greatly increase the general applicability of upconversion nanotechnologies.
Collapse
Affiliation(s)
- Kai Huang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu X, Li X, Qin X, Xie X, Huang L, Liu X. Hedgehog-Like Upconversion Crystals: Controlled Growth and Molecular Sensing at Single-Particle Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28804927 DOI: 10.1002/adma.201702315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/29/2017] [Indexed: 05/06/2023]
Abstract
Topological control of nanostructures plays a crucial role in understanding the crystal growth process at the nanometer length scale. Here, the scalable synthesis of upconversion materials with distinct hedgehog-like morphologies by a seed-mediated synthetic procedure is reported. It is demonstrated that a close match in the crystal lattice between the core and shell components is essential for synthesizing such hierarchical nanostructures. These optical nanomaterials also enable the development of a single-particle-based platform for high-sensitivity molecular sensing.
Collapse
Affiliation(s)
- Xiaowang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xiyan Li
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ling Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Center for Functional Materials, NUS (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
25
|
Dukhno O, Przybilla F, Collot M, Klymchenko A, Pivovarenko V, Buchner M, Muhr V, Hirsch T, Mély Y. Quantitative assessment of energy transfer in upconverting nanoparticles grafted with organic dyes. NANOSCALE 2017; 9:11994-12004. [PMID: 28795714 DOI: 10.1039/c6nr09706e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Upconverting nanoparticles (UCNPs) are luminophores that have been investigated for a multitude of biological applications, notably low-background imaging, high-sensitivity assays, and cancer theranostics. In these applications, they are frequently used as a donor in resonance energy transfer (RET) pairs. However, because of the peculiarity and non-linearity of their luminescence mechanism, their behavior as a RET pair component has been difficult to predict quantitatively, preventing their optimization for subsequent applications. In this article, we assembled UCNP-organic dye RET systems and investigated their luminescence decays and spectra, with varying UCNP sizes and quantities of dyes grafted onto their surface. We observed an increase in RET efficiency with lower particle sizes and higher dye decoration. We also observed several unexpected effects, notably a quenching of UCNP luminescence bands that are not resonant with the absorption of organic dyes. We proposed a semi-empirical Monte Carlo model for predicting the behavior of UCNP-organic dye systems, and validated it by comparison with our experimental data. These findings will be useful for the development of more accurate UCNP-based assays, sensors, and imaging agents, as well as for optimization of UCNP-organic dye RET systems employed in cancer treatment and theranostics.
Collapse
Affiliation(s)
- Oleksii Dukhno
- Laboratory of Biophotonics and Pharmacology, UMR 7213 CNRS, University of Strasbourg, 67000 Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers. Sci Rep 2017; 7:45633. [PMID: 28361967 PMCID: PMC5374495 DOI: 10.1038/srep45633] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory efficacy. It is of vital importance for these nanophotosensitizers to reach specifically the organelles and to perform PDT with precise time control. To do so, we have in this work traced the dynamic subcellular distribution, especially in organelles such as lysosomes and mitochondria, of the poly(allylamine)-modified and dual-loaded nanophotosensitizers. The apoptosis of the cancer cells induced by PDT with the dependence of the distribution status of the nanophotosensitizers in organelles was obtained, which has provided an in-depth picture of intracellular trafficking of organelle-targeted nanophotosensitizers. Our results shall facilitate the improvement of nanotechnology assisted photodynamic therapy of cancers.
Collapse
|
27
|
Alyatkin S, Asharchuk I, Khaydukov K, Nechaev A, Lebedev O, Vainer Y, Semchishen V, Khaydukov E. The influence of energy migration on luminescence kinetics parameters in upconversion nanoparticles. NANOTECHNOLOGY 2017; 28:035401. [PMID: 27928995 DOI: 10.1088/1361-6528/28/3/035401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mechanism of upconversion at the nanoscale is still under discussion. In this paper, we report on the experimental results of anti-Stokes luminescence kinetics in the upconversion nanoparticles of β-NaYF4: 20%Yb3+; 0.6%Tm3+. The parameters of the luminescence kinetics were found to be unambiguously dependent on the number of excitation quanta n, which are necessary for certain transitions between the energy states of thulium ions. The observed correlation has been explained by means of the long-lasting energy migration between the ytterbium ions. The spread in time between the luminescent maxima of the corresponding thulium transitions not only shows the nonlinear character of upconversion, but also reveals the time scale of energy migration as well. From these, we derive that the conventional Förster formalism applied to the estimation of energy transfer efficiency in UCNP-fluorophore pairs can provide misleading results.
Collapse
Affiliation(s)
- Sergey Alyatkin
- Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninsky pr. 59, Moscow, 119333, Russia. Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russia. Institute for Spectroscopy Russian Academy of Sciences, Fizicheskaya, 5, Troitsk, Moscow, 108840, Russia. EUV-Labs LLC, Moscow, Troitsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016; 45:6597-6626. [PMID: 27722328 PMCID: PMC5118097 DOI: 10.1039/c6cs00271d] [Citation(s) in RCA: 1236] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs. Recent advances in nanotechnology and nanomedicine have provided new opportunities to develop ROS-generating systems through photodynamic or non-photodynamic procedures while tackling the challenges of the current PDT approaches. In this review, we summarize the current status and discuss the possible opportunities for ROS generation for cancer therapy. We hope this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.
Collapse
Affiliation(s)
- Zijian Zhou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Buchner M, Muhr V, Himmelstoß SF, Thomas H. 4 Functionalization Aspects of Water Dispersible Upconversion Nanoparticles. ACTA ACUST UNITED AC 2016. [DOI: 10.1201/9781315371535-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
30
|
Hou Z, Deng K, Li C, Deng X, Lian H, Cheng Z, Jin D, Lin J. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd3+-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials 2016; 101:32-46. [DOI: 10.1016/j.biomaterials.2016.05.024] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
|
31
|
Xu X, Zhang P, Yuan Q, Lei P, Dong L, Wang Z, Liu X, Song S, Feng J, Zhang H. Dual-functional α-NaYb(Mn)F4:Er3+@NaLuF4 nanocrystals with highly enhanced red upconversion luminescence. RSC Adv 2016. [DOI: 10.1039/c6ra01569g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Excellent dual-functional nanoprobes α-NaYb(Mn)F4:Er3+@NaLuF4 UCNPs for efficient in vivo NIR-to-red UCL deep tissue and CT imaging.
Collapse
|