1
|
Gupta R, Singhal M. An eco-friendly polycaprolactone/graphite composite as a robust freestanding electrode platform for supercapacitive energy storage. NANOSCALE 2024; 16:20155-20167. [PMID: 39397662 DOI: 10.1039/d4nr03113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We present the successful development and characterization of a novel eco-friendly polycaprolactone-graphite (PCLGr) composite as a freestanding platform, serving as a bulk conducting chip electrode for supercapacitor applications. Notably, this is the first report of using this biodegradable polymer for making such a self-standing conductive platform. Traditional polymer and carbon-based electrodes often rely on insulating supports or non-eco-friendly materials, which we have addressed in our work. Direct deposition of the redox material, polyaniline (PANI), onto the electrode via the galvanostatic method has been achieved. The specific capacitance of PANI demonstrates comparability to previous studies utilizing conventional current collectors. Notably, the electrode exhibits exceptional stability in highly acidic environments. Comprehensive characterization utilizing bulk conductivity measurements, XRD, TGA, DSC, SEM, and stress-strain analyses shows advanced properties of the electrode. It complements the evaluation of PANI's supercapacitive performance through cyclic voltammetry, charge-discharge measurements, and impedance spectroscopy. We achieved a specific capacitance of ≈162 F g-1 at 0.5 A g-1. This innovative electrode presents a promising alternative to conventional counterparts across various electrochemical applications.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Applied Chemistry, School of Sciences, ITM(SLS) Baroda University, Vadodara, Gujarat 391510, India.
| | - Monika Singhal
- Shree PM Patel Institute of PG Studies and Research in Science (Affiliated to Sardar Patel University VV Nagar), Anand, Gujarat 388001, India
| |
Collapse
|
2
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Bao Y, Nishiwaki Y, Kawano T, Utsunomiya T, Sugimura H, Ichii T. Molecular-Resolution Imaging of Ionic Liquid/Alkali Halide Interfaces with Varied Surface Charge Densities via Atomic Force Microscopy. ACS NANO 2024; 18:25302-25315. [PMID: 39185607 DOI: 10.1021/acsnano.4c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
When in contact with charged solid surfaces, ionic liquids (ILs) are known to form solvation structures consisting of alternating cation and anion layers. This phenomenon is considered to originate from the adsorption layer of counterions overcompensating the surface charge, so-called overscreening. However, the response of these layers to surfaces with near-zero or extremely high surface charge density (σ) remains inadequately understood. Here, we probe the solvation structure of ILs on alkali halide surfaces with varied surface orientations: nearly zero-charged RbI(100) and highly charged RbI(111), by employing frequency modulation atomic force microscopy with atomic resolution. Two commonly used ILs are examined in this study: 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpyr][NTf2]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]). On RbI(100) surfaces with near zero σ, we observe alternating cation and anion layers, diverging from the previously proposed monolayer model for IL/alkali halide(100) interfaces. These results support the argument that overscreening occurs under low σ, even approaching zero, and reconcile conflicting experimental conclusions about low σ systems. On RbI(111) surfaces with high σ, we identify solvation structures consisting of two consecutive counterion layers. This structure aligns with the theoretically predicted crowding; a phenomenon rarely observed in commonly used ILs due to typically unreachable σ in electrochemical IL/electrode systems. Our findings indicate that alkali halide(111) surfaces are potentially valuable for exploring the crowding phenomenon in ILs, addressing the current scarcity of experimental observations.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuto Nishiwaki
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Touma Kawano
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Utsunomiya
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Ichii
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Zhou Z, Li J, Song Z, Zhao R. Occurrence Characteristics of Water in Nano-Slit Pores under Different Solution Conditions: A Case Study on Kaolinite. ACS OMEGA 2023; 8:18990-19001. [PMID: 37273605 PMCID: PMC10233661 DOI: 10.1021/acsomega.3c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
The presence of water in narrow pore spaces affects the occurrence and flow of methane, which in turn affects shale gas production. Therefore, studying the occurrence and distribution characteristics of water is of great significance to predict gas production. Based on molecular dynamics simulations, this study investigated the occurrence characteristics and influencing variables of liquid water in kaolinite nanopores in situ. Owing to its widespread distribution, kaolinite is the most prevalent clay mineral with two surfaces with different characteristics. Three systems of pure water, a CaCl2 solution, and a H2O/CH4 mixed phase were created at varied temperatures (80-120 °C) and pressures (70-120 MPa). The presence of gas and water in the nanopores was investigated thoroughly. The results showed that the adsorption of water on the Al-O octahedral surface of kaolinite was not affected by external conditions under in situ conditions, whereas the adsorption of water on the Si-O tetrahedral surface decreased with increasing temperature, but the change was small. When ions were present in the system, the water capacity decreased. Based on the aforementioned results, external conditions, such as temperature and pressure do not affect the basic state of water. However, if there are more than two fluid types in the system, the adsorption of water on the mineral surface is reduced owing to competitive adsorption. In addition, a CH4-H2O mixed system was simulated, in which methane molecules were distributed in clusters. There are two types of adsorptions in pores: gas-solid interactions and solid-liquid-gas interactions. CH4 molecules are thought to be clustered in water molecules because of the strong hydrogen bonding interactions among the water.
Collapse
Affiliation(s)
- Zhiyan Zhou
- School
of Geosciences, China University of Petroleum
(East China), Qingdao 266580, China
- Shandong
Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China
| | - Junqian Li
- School
of Geosciences, China University of Petroleum
(East China), Qingdao 266580, China
- Shandong
Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhaojing Song
- School
of Geosciences, China University of Petroleum
(East China), Qingdao 266580, China
- Shandong
Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China
| | - Rixin Zhao
- School
of Geosciences, China University of Petroleum
(East China), Qingdao 266580, China
- Shandong
Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
Jeong KJ, Jeong S, Lee S, Son CY. Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204272. [PMID: 36373701 DOI: 10.1002/adma.202204272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Electrostatic interactions play a dominant role in charged materials systems. Understanding the complex correlation between macroscopic properties with microscopic structures is of critical importance to develop rational design strategies for advanced materials. But the complexity of this challenging task is augmented by interfaces present in the charged materials systems, such as electrode-electrolyte interfaces or biological membranes. Over the last decades, predictive molecular simulations that are founded in fundamental physics and optimized for charged interfacial systems have proven their value in providing molecular understanding of physicochemical properties and functional mechanisms for diverse materials. Novel design strategies utilizing predictive models have been suggested as promising route for the rational design of materials with tailored properties. Here, an overview of recent advances in the understanding of charged interfacial systems aided by predictive molecular simulations is presented. Focusing on three types of charged interfaces found in energy materials and biomacromolecules, how the molecular models characterize ion structure, charge transport, morphology relation to the environment, and the thermodynamics/kinetics of molecular binding at the interfaces is discussed. The critical analysis brings two prominent field of energy materials and biological science under common perspective, to stimulate crossover in both research field that have been largely separated.
Collapse
Affiliation(s)
- Kyeong-Jun Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Seungwon Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sangmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
6
|
Polyacrylonitrile- b-Polystyrene Block Copolymer-Derived Hierarchical Porous Carbon Materials for Supercapacitor. Polymers (Basel) 2022; 14:polym14235109. [PMID: 36501504 PMCID: PMC9739205 DOI: 10.3390/polym14235109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
The use of block copolymers as a sacrificial template has been demonstrated to be a powerful method for obtaining porous carbons as electrode materials in energy storage devices. In this work, a block copolymer of polystyrene and polyacrylonitrile (PS-b-PAN) has been used as a precursor to produce fibers by electrospinning and powdered carbons, showing high carbon yield (~50%) due to a low sacrificial block content (fPS ≈ 0.16). Both materials have been compared structurally (in addition to comparing their electrochemical behavior). The porous carbon fibers showed superior pore formation capability and exhibited a hierarchical porous structure, with small and large mesopores and a relatively high surface area (~492 m2/g) with a considerable quantity of O/N surface content, which translates into outstanding electrochemical performance with excellent cycle stability (close to 100% capacitance retention after 10,000 cycles) and high capacitance value (254 F/g measured at 1 A/g).
Collapse
|
7
|
Bi S, Salanne M. Co-Ion Desorption as the Main Charging Mechanism in Metallic 1T-MoS 2 Supercapacitors. ACS NANO 2022; 16:18658-18666. [PMID: 36269844 DOI: 10.1021/acsnano.2c07272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metallic 1T-MoS2 is a promising electrode material for supercapacitor applications. Its layered structure allows the efficient intercalation of ions, leading to experimental volumetric capacitance as high as 140 F/cm3. Molecular dynamics could in principle be used to characterize its charging mechanism; however, unlike conventional nanoporous carbon, 1T-MoS2 is a multicomponent electrode. The Mo and S atoms have very different electronegativities so that 1T-MoS2 cannot be simulated accurately using the conventional constant potential method. In this work, we show that controlling the electrochemical potential of the atoms allows one to recover average partial charges for the elements in agreement with electronic structure calculations for the material at rest, without compromising the ability to simulate systems under an applied voltage. The simulations yield volumetric capacitances in agreement with experiments. We show that due to the large electronegativity of S, the co-ion desorption is the main charging mechanism at play during the charging process. This contrasts drastically with carbon materials for which ion exchange and counterion adsorption usually dominate. In the future, our method can be extended to the study of a wide range of families of 2D layered materials such as MXenes.
Collapse
Affiliation(s)
- Sheng Bi
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459, 80039Amiens Cedex, France
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459, 80039Amiens Cedex, France
- Institut Universitaire de France (IUF), 75231Paris Cedex 05, France
| |
Collapse
|
8
|
Peng K, Lin J, Yang D, Fu F, Dai Z, Zhou G, Yang Z. Molecular-Level Insights into Interfacial Interaction–Nanostructure Relationships of Imidazolium-Based Ionic Liquids around Carbon Nanotube Electrodes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuilin Peng
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Deshuai Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Fangjia Fu
- School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People’s Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
9
|
A Biodegradable Polymer-Based Plastic Chip Electrode as a Current Collector in Supercapacitor Application. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here, we report the performance of a biodegradable polymer-based Plastic chip Electrode (PCE) as a current collector in supercapacitor applications. Its production was evaluated using two redox materials (conducting polymers polyaniline and poly(3,4-ethylene dioxythiophene)) and a layered material, rGO. The conducting polymers were directly deposited over the Eco-friendly PCE (EPCE) using the galvanostatic method. The rGO was prepared in the conventional way and loaded over the EPCE using a binder. Both conducting polymers and rGO showed proper specific capacitance compared to previous studies with regular current collectors. Electrodes were found highly stable during experiments in high acidic medium. The supercapacitive performance was evaluated with cyclic voltammetry, charge–discharge measurements, and impedance spectroscopy. The supercapacitive materials were also characterized for their electrical and microscopic properties. Polyaniline and PEDOT were deposited over EPCEs showing >150 Fg−1 and >120 Fg−1 specific capacitance, respectively, at 0.5 Ag−1. rGO continued to show higher particular capacitance of >250 Fg−1 with excellent charge–discharge cyclic stability. The study concludes that EPCs can be used as promising electrodes for electrical energy storage applications.
Collapse
|
10
|
González-Tovar E, Lozada-Cassou M. Overcharging-Non-overcharging transition curve in cylindrical nano-pores. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Paulista Neto AJ, da Silva DAC, Gonçalves VA, Zanin H, Freitas RG, Fileti EE. An evaluation of the capacitive behavior of supercapacitors as a function of the radius of cations using simulations with a constant potential method. Phys Chem Chem Phys 2022; 24:3280-3288. [PMID: 35048088 DOI: 10.1039/d1cp04350a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the atomistic molecular dynamics, applying the constant potential method to determine the structural and electrostatic interactions at the electrode-electrolyte interface of electrochemical supercapacitors as a function of the cation radius (Cs+, Rb+, K+, Na+, Li+). We find that the electrical double layer is susceptible to the size, hydration layer volume, and cations' mobility and analyzed them. Besides, the transient potential shows an increase in magnitude and length as a function of the monocation size, i.e., Cs+ > Rb+ > K+ > Na+ > Li+. On the other hand, the charge distribution along the electrode surface is less uniform for large monocations. Nonetheless, the difference is not observed as a function of the radius of the cation for the integral capacitance. Our results are comparable to studies that employed the fixed charge method for treating such systems.
Collapse
Affiliation(s)
- Antenor J Paulista Neto
- Advanced Energy Storage Division, Center for Innovation on New Energies, Carbon Sci-Tech Labs, School of Electrical and Computer Engineering, University of Campinas; Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.
| | - Débora A C da Silva
- Advanced Energy Storage Division, Center for Innovation on New Energies, Carbon Sci-Tech Labs, School of Electrical and Computer Engineering, University of Campinas; Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.
| | - Vanessa A Gonçalves
- Institute of Physics & Department of Chemistry, Laboratory of Computational Materials, Federal University of Mato Grosso, 78060-900, Cuiabá, MT, Brazil.
| | - Hudson Zanin
- Advanced Energy Storage Division, Center for Innovation on New Energies, Carbon Sci-Tech Labs, School of Electrical and Computer Engineering, University of Campinas; Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.
| | - Renato G Freitas
- Institute of Physics & Department of Chemistry, Laboratory of Computational Materials, Federal University of Mato Grosso, 78060-900, Cuiabá, MT, Brazil.
| | - Eudes E Fileti
- Institute of Science and Technology of the Federal University of São Paulo, 12247-014, São José dos Campos, SP, Brazil.
| |
Collapse
|
12
|
Hosseinzadeh B, Nagar B, Benages-Vilau R, Gomez-Romero P, Kazemi SH. MOF-derived conformal cobalt oxide/C composite material as high-performance electrode in hybrid supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Qing L, Long T, Yu H, Li Y, Tang W, Bao B, Zhao S. Quantifying ion desolvation effects on capacitances of nanoporous electrodes with liquid electrolytes. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Voroshylova IV, Ers H, Koverga V, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro M. Ionic liquid–metal interface: The origins of capacitance peaks. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Faraezi S, Khan MS, Ohba T. Dehydration of Cations Inducing Fast Ion Transfer and High Electrical Capacitance Performance on Graphene Electrode in Aqueous Electrolytes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sharifa Faraezi
- Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Md Sharif Khan
- Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Tomonori Ohba
- Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
16
|
Matse M, Berg P, Eikerling M. Asymmetric double-layer charging in a cylindrical nanopore under closed confinement. J Chem Phys 2020; 152:084103. [PMID: 32113335 DOI: 10.1063/1.5139541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article presents a physical-mathematical treatment and numerical simulations of electric double layer charging in a closed, finite, and cylindrical nanopore of circular cross section, embedded in a polymeric host with charged walls and sealed at both ends by metal electrodes under an external voltage bias. Modified Poisson-Nernst-Planck equations were used to account for finite ion sizes, subject to an electroneutrality condition. The time evolution of the formation and relaxation of the double layers was explored. Moreover, equilibrium ion distributions and differential capacitance curves were investigated as functions of the pore surface charge density, electrolyte concentration, ion sizes, and pore size. Asymmetric properties of the differential capacitance curves reveal that the structure of the double layer near each electrode is controlled by the charge concentration along the pore surface and by charge asymmetry in the electrolyte. These results carry implications for accurately simulating cylindrical capacitors and electroactuators.
Collapse
Affiliation(s)
- Mpumelelo Matse
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Peter Berg
- Department of Science, University of Alberta, Camrose, Alberta T4V 2R3, Canada
| | - Michael Eikerling
- Department of Physics and Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
17
|
A Constant Potential Molecular Dynamics Simulation Study of the Atomic‐Scale Structure of Water Surfaces Near Electrodes. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
González-Tovar E, Lozada-Cassou M. Long-range forces and charge inversions in model charged colloidal dispersions at finite concentration. Adv Colloid Interface Sci 2019; 270:54-72. [PMID: 31181349 DOI: 10.1016/j.cis.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
In charged colloidal dispersion systems the interest is in finding their stability conditions, phase transitions, and transport properties, either in bulk or confinement, among other physicochemical quantities, for which the knowledge of the dispersions' molecular structure and the associated macroion-macroion forces is crucial. To investigate these phenomena simple models have been proposed. Most of the theoretical and simulation studies on charged particles suspensions are at infinite dilution conditions. Hence, these studies have been focused on the electrolyte structure around one or two isolated central particle(s), where phenomena as charge reversal, charge inversion and surface charge amplification have been shown to be relevant. However, experimental studies at finite volume fraction exhibit interesting phenomenology which imply very long-range correlations. A simple, yet useful, model is the Colloidal Primitive Model, in which the colloidal dispersion is modeled as a mixture of size (and charge) asymmetrical hard spheres, at finite volume fraction. In this paper we review recent integral equations solutions for this model, where very long-range attractive-repulsive forces, as well as new long-range, giant charge inversions are reported. The calculated macroions radial distribution functions, charge distributions, and macroion-macroion forces are qualitatively consistent with existing experimental results, and Monte Carlo and molecular dynamics simulations.
Collapse
|
19
|
Bedrov D, Piquemal JP, Borodin O, MacKerell AD, Roux B, Schröder C. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem Rev 2019; 119:7940-7995. [PMID: 31141351 PMCID: PMC6620131 DOI: 10.1021/acs.chemrev.8b00763] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/30/2022]
Abstract
Many applications in chemistry, biology, and energy storage/conversion research rely on molecular simulations to provide fundamental insight into structural and transport properties of materials with high ionic concentrations. Whether the system is comprised entirely of ions, like ionic liquids, or is a mixture of a polar solvent with a salt, e.g., liquid electrolytes for battery applications, the presence of ions in these materials results in strong local electric fields polarizing solvent molecules and large ions. To predict properties of such systems from molecular simulations often requires either explicit or mean-field inclusion of the influence of polarization on electrostatic interactions. In this manuscript, we review the pros and cons of different treatments of polarization ranging from the mean-field approaches to the most popular explicit polarization models in molecular dynamics simulations of ionic materials. For each method, we discuss their advantages and disadvantages and emphasize key assumptions as well as their adjustable parameters. Strategies for the development of polarizable models are presented with a specific focus on extracting atomic polarizabilities. Finally, we compare simulations using polarizable and nonpolarizable models for several classes of ionic systems, discussing the underlying physics that each approach includes or ignores, implications for implementation and computational efficiency, and the accuracy of properties predicted by these methods compared to experiments.
Collapse
Affiliation(s)
- Dmitry Bedrov
- Department
of Materials Science & Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Jean-Philip Piquemal
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, CC137, 4 Place Jussieu, Tour 12-13, 4ème étage, 75252 Paris Cedex 05, France
- Institut
Universitaire de France, 75005, Paris Cedex 05, France
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Oleg Borodin
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20703, United
States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, Gordon Center for Integrative
Science, University of Chicago, 929 57th Street, Chicago, Illinois 60637, United States
| | - Christian Schröder
- Department
of Computational Biological Chemistry, University
of Vienna, Währinger Strasse 17, A-1090 Vienna, Austria
| |
Collapse
|
20
|
Su H, Lian C, Liu J, Liu H. Machine learning models for solvent effects on electric double layer capacitance. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Makeev MA, Rajput NN. Computational screening of electrolyte materials: status quo and open problems. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Duan HH, Bai CH, Li JY, Yang Y, Yang BL, Gou XF, Yue ML, Li ZX. Temperature-Dependent Morphologies of Precursors: Metal-Organic Framework-Derived Porous Carbon for High-Performance Electrochemical Double-Layer Capacitors. Inorg Chem 2019; 58:2856-2864. [PMID: 30730708 DOI: 10.1021/acs.inorgchem.8b03541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, three Cu metal-organic framework samples with tunable rhombic, squama, and trucated bipyramid morphologies have been synthesized at 0, 25, and 60 °C, respectively, and further employed as precursors to initially prepare Cu@C composites by the calcination-thermolysis procedure. Then Cu@C composites have been etched with HCl and subsequently activated with KOH to obtain activated porous carbon (APC-0, -25, and -60). Interestingly, APC-25 presents a loose multilevel morphology of cabbage and possesses the largest specific surface area (1880.4 m2 g-1) and pore volume (0.81 cm3 g-1) among these APC materials. Consequently, APC-25 also exhibits the highest specific capacitance of 196 F g-1 at 0.5 A g-1, and the corresponding symmetric supercapacitor cell (SSC) achieves a remarkable energy density of 11.8 Wh kg-1 at a power density of 350 W kg-1. Furthermore, APC-25 shows excellent cycling stability, and the loss of capacitance is only 7.7% even after 10000 cycles at 1 A g-1. Significantly, five light-emitting diodes can be lit by six SSCs, which proves that APC-25 can be used in energy storage devices.
Collapse
Affiliation(s)
- Hui-Hui Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Cai-He Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Jia-Yi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Ying Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Bo-Long Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Xiao-Feng Gou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Man-Li Yue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Zuo-Xi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| |
Collapse
|
23
|
Abdelsalam ME, Elghamry I, Touny AH, Saleh MM. Nickel phosphate/carbon fibre nanocomposite for high-performance pseudocapacitors. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1279-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Ma K, Zhang C, Woodward CE, Wang X. Bridging the gap between macroscopic electrochemical measurements and microscopic molecular dynamic simulations: Porous carbon supercapacitor with ionic liquids. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Abe H, Takekiyo T, Yoshimura Y, Shimizu A, Ozawa S. Multiple crystal pathways and crystal polymorphs in protic ionic liquids. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Mendez-Morales T, Burbano M, Haefele M, Rotenberg B, Salanne M. Ion-ion correlations across and between electrified graphene layers. J Chem Phys 2018; 148:193812. [PMID: 30307207 DOI: 10.1063/1.5012761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When an ionic liquid adsorbs onto a porous electrode, its ionic arrangement is deeply modified due to a screening of the Coulombic interactions by the metallic surface and by the confinement imposed upon it by the electrode's morphology. In particular, ions of the same charge can approach at close contact, leading to the formation of a superionic state. The impact of an electrified surface placed between two liquid phases is much less understood. Here we simulate a full supercapacitor made of the 1-butyl-3-methylimidazolium hexafluorophosphate and nanoporous graphene electrodes, with varying distances between the graphene sheets. The electrodes are held at constant potential by allowing the carbon charges to fluctuate. Under strong confinement conditions, we show that ions of the same charge tend to adsorb in front of each other across the graphene plane. These correlations are allowed by the formation of a highly localized image charge on the carbon atoms between the ions. They are suppressed in larger pores, when the liquid adopts a bilayer structure between the graphene sheets. These effects are qualitatively similar to the recent templating effects which have been reported during the growth of nanocrystals on a graphene substrate.
Collapse
Affiliation(s)
- Trinidad Mendez-Morales
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Mario Burbano
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Matthieu Haefele
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Mathieu Salanne
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
27
|
González-Calderón A, Chávez-Páez M, González-Tovar E, Lozada-Cassou M. Outsized Amplitude-Modulated Structure of Very-Long-Range Charge Inversions in Model Colloidal Dispersions. J Phys Chem B 2018; 122:7002-7008. [PMID: 29911869 DOI: 10.1021/acs.jpcb.8b03416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most theoretical and simulation studies on charged suspensions are at infinite dilution and are focused on the electrolyte structure around one or two isolated particles. Some classic experimental studies with latex particle solutions exhibit interesting phenomenology which imply very-long-range correlations. Here, we apply an integral equation theory to a model charged macroion suspension, at finite volume fraction, and find an amplitude-modulated charge inversion structure, with outsized amplitudes and of very-long-range extension. These inversions are different from the standard charge inversions in that they occur at finite macroions' volume fraction, far away from the central macroion, are outsized, and increase, not decrease, with increasing particle charge and distance to the central particle, which is indicative of long-range correlations. We find our results to be in agreement with our Monte Carlo simulations and qualitatively consistent with existing experimental results.
Collapse
Affiliation(s)
- Alfredo González-Calderón
- Instituto de Energías Renovables , Universidad Nacional Autónoma de México (U.N.A.M.) , 62580 Temixco , Morelos , Mexico
| | - Martín Chávez-Páez
- Instituto de Física , Universidad Autónoma de San Luis Potosí , Álvaro Obregón 64 , 78000 San Luis Potosí , Mexico
| | - Enrique González-Tovar
- Instituto de Física , Universidad Autónoma de San Luis Potosí , Álvaro Obregón 64 , 78000 San Luis Potosí , Mexico
| | - Marcelo Lozada-Cassou
- Instituto de Energías Renovables , Universidad Nacional Autónoma de México (U.N.A.M.) , 62580 Temixco , Morelos , Mexico
| |
Collapse
|
28
|
Xu K, Lin Z, Merlet C, Taberna PL, Miao L, Jiang J, Simon P. Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Two-Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study. CHEMSUSCHEM 2018; 11:1892-1899. [PMID: 29211947 DOI: 10.1002/cssc.201702068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 06/07/2023]
Abstract
We present a molecular dynamics simulation study achieved on two-dimensional (2D) Ti3 C2 Tx MXenes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM]+ [TFSI]- ) electrolyte. Our simulations reproduce the different patterns of volumetric change observed experimentally for both the negative and positive electrodes. The analysis of ionic fluxes and structure rearrangements in the 2D material provide an atomic scale insight into the charge and discharge processes in the layer pore and confirm the existence of two different charge-storage mechanisms at the negative and positive electrodes. The ionic number variation and the structure rearrangement contribute to the dynamic volumetric changes of both electrodes: negative electrode expansion and positive electrode contraction.
Collapse
Affiliation(s)
- Kui Xu
- CIRIMAT UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
- FR CNRS 3459, Réseau sur le Stockage Electrochimique de l'Energie (RS2E), 33 rue Saint Leu, 80039, Amiens, France
| | - Zifeng Lin
- CIRIMAT UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
- FR CNRS 3459, Réseau sur le Stockage Electrochimique de l'Energie (RS2E), 33 rue Saint Leu, 80039, Amiens, France
| | - Céline Merlet
- CIRIMAT UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
- FR CNRS 3459, Réseau sur le Stockage Electrochimique de l'Energie (RS2E), 33 rue Saint Leu, 80039, Amiens, France
| | - Pierre-Louis Taberna
- CIRIMAT UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
- FR CNRS 3459, Réseau sur le Stockage Electrochimique de l'Energie (RS2E), 33 rue Saint Leu, 80039, Amiens, France
| | - Ling Miao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jianjun Jiang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Patrice Simon
- CIRIMAT UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
- FR CNRS 3459, Réseau sur le Stockage Electrochimique de l'Energie (RS2E), 33 rue Saint Leu, 80039, Amiens, France
| |
Collapse
|
29
|
Chen M, Goodwin ZA, Feng G, Kornyshev AA. On the temperature dependence of the double layer capacitance of ionic liquids. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Dong D, Vatamanu JP, Wei X, Bedrov D. The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study. J Chem Phys 2018; 148:193833. [DOI: 10.1063/1.5016309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Dengpan Dong
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, USA
| | - Jenel P. Vatamanu
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, USA
- Electrochemistry Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, 2800 Power Mill Rd., Adelphi, Maryland 20783, USA
| | - Xiaoyu Wei
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, USA
| |
Collapse
|
31
|
Moradzadeh A, Motevaselian MH, Mashayak SY, Aluru NR. Coarse-Grained Force Field for Imidazolium-Based Ionic Liquids. J Chem Theory Comput 2018; 14:3252-3261. [DOI: 10.1021/acs.jctc.7b01293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alireza Moradzadeh
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Mohammad H. Motevaselian
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sikandar Y. Mashayak
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Narayana R. Aluru
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Abe H, Murata K, Kiyokawa S, Yoshimura Y. Surface tension anomalies in room temperature ionic liquids-acetone solutions. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Garlyyev B, Xue S, Watzele S, Scieszka D, Bandarenka AS. Influence of the Nature of the Alkali Metal Cations on the Electrical Double-Layer Capacitance of Model Pt(111) and Au(111) Electrodes. J Phys Chem Lett 2018; 9:1927-1930. [PMID: 29595987 DOI: 10.1021/acs.jpclett.8b00610] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the properties of the electrical double layer (EDL) is one of the interdisciplinary topics that plays a key role in the investigation of numerous natural and artificial systems. We present experimental evidence about the influence of the nature of the alkali metal cations on the EDL capacitance for two model electrodes, Pt(111) and Au(111), in 0.05 M AMClO4 ( AM: Li+, Na+, K+, Rb+, Cs+) electrolytes using impedance spectroscopy measurements. Our data show that counterintuitively the differential EDL capacitance of both electrodes measured close to their potentials of zero charge increased linearly in the presence of alkali metal cations as Li+ < Na+ < K+ < Rb+ < Cs+. We also estimated the effective concentrations of these cations at the EDL, which appeared ∼80 times higher than their bulk concentrations. We believe that these findings should be of importance for theoretical modeling of the EDL and better understanding and faster design of new functional systems for numerous applications.
Collapse
Affiliation(s)
- Batyr Garlyyev
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Song Xue
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Sebastian Watzele
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Daniel Scieszka
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstraße 4 , 80799 Munich , Germany
| | - Aliaksandr S Bandarenka
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstraße 4 , 80799 Munich , Germany
| |
Collapse
|
34
|
Karatrantos A, Khan S, Ohba T, Cai Q. The effect of different organic solvents on sodium ion storage in carbon nanopores. Phys Chem Chem Phys 2018; 20:6307-6315. [DOI: 10.1039/c7cp04878e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GCMC atomistic simulation to study the coupled effects of nanoporous hard carbon and different organic solvents on Na ion storage.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
- Luxembourg Institute of Science and Technology
| | - Sharif Khan
- Graduate School of Science
- Chiba University
- Inage
- Japan
| | - Tomonori Ohba
- Graduate School of Science
- Chiba University
- Inage
- Japan
| | - Qiong Cai
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
| |
Collapse
|
35
|
Guerrero-García GI, González-Tovar E, Chávez-Páez M, Kłos J, Lamperski S. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness. Phys Chem Chem Phys 2017; 20:262-275. [PMID: 29204593 DOI: 10.1039/c7cp05433e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
Collapse
Affiliation(s)
| | - Enrique González-Tovar
- Instituto de Física de la Universidad Autónoma de San Luis Potosí
- 78000 San Luis Potosí
- Mexico
| | - Martín Chávez-Páez
- Instituto de Física de la Universidad Autónoma de San Luis Potosí
- 78000 San Luis Potosí
- Mexico
| | - Jacek Kłos
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | | |
Collapse
|
36
|
Härtel A. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:423002. [PMID: 28898203 DOI: 10.1088/1361-648x/aa8342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
37
|
Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7090939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Yang H, Yang J, Bo Z, Chen X, Shuai X, Kong J, Yan J, Cen K. Kinetic-Dominated Charging Mechanism within Representative Aqueous Electrolyte-based Electric Double-Layer Capacitors. J Phys Chem Lett 2017; 8:3703-3710. [PMID: 28742361 DOI: 10.1021/acs.jpclett.7b01525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The chemical nature of electrolytes has been demonstrated to play a pivotal role in the charge storage of electric double-layer capacitors (EDLCs), whereas primary mechanisms are still partially resolved but controversial. In this work, a systematic exploration into EDL structures and kinetics of representative aqueous electrolytes is performed with numerical simulation and experimental research. Unusually, a novel charging mechanism exclusively predominated by kinetics is recognized, going beyond traditional views of manipulating capacitances preferentially via interfacial structural variations. Specifically, strikingly distinctive EDL structures stimulated by diverse ion sizes, valences, and mixtures manifest a virtually identical EDL capacitance, where the dielectric nature of solvents attenuates ionic effects on electrolyte redistributions, in stark contradiction with solvent-free counterpart and traditional Helmholtz theory. Meanwhile, corresponding kinetics evolve conspicuously with ionic species, intimately correlated with ion-solvent interactions. The achieved mechanisms are subsequently illuminated by electrochemical measurements, highlighting the crucial interplay between ions and solvents in regulating EDLC performances.
Collapse
Affiliation(s)
- Huachao Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - Jinyuan Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - Zheng Bo
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - Xia Chen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - Xiaorui Shuai
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - Jing Kong
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| |
Collapse
|
39
|
Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu J, Kent PRC, Cummings PT, Jiang D, Wesolowski DJ. Computational Insights into Materials and Interfaces for Capacitive Energy Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700059. [PMID: 28725531 PMCID: PMC5515120 DOI: 10.1002/advs.201700059] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/25/2017] [Indexed: 05/02/2023]
Abstract
Supercapacitors such as electric double-layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double-layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte-Carlo (MC) methods. In recent years, combining first-principles and classical simulations to investigate the carbon-based EDLCs has shed light on the importance of quantum capacitance in graphene-like 2D systems. More recently, the development of joint density functional theory (JDFT) enables self-consistent electronic-structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage.
Collapse
Affiliation(s)
- Cheng Zhan
- Department of ChemistryUniversity of CaliforniaRiversideCA92521United States
| | - Cheng Lian
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCalifornia92521United States
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Yu Zhang
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennessee37235United States
| | - Matthew W. Thompson
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennessee37235United States
| | - Yu Xie
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTennessee37831United States
| | - Jianzhong Wu
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCalifornia92521United States
| | - Paul R. C. Kent
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTennessee37831United States
- Computer Science and Mathematics DivisionOak Ridge National LaboratoryOak RidgeTennessee37831United States
| | - Peter T. Cummings
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennessee37235United States
| | - De‐en Jiang
- Department of ChemistryUniversity of CaliforniaRiversideCA92521United States
| | - David J. Wesolowski
- Chemcial Sciences DivisionOak Ridge National LaboratoryOak RidgeTennessee37831United States
| |
Collapse
|
40
|
Ma K, Wang X, Cui Y, Lin F, Deng C, Shi H. Understanding the graphene-based electric double layer from dielectric perspective: A density functional study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Adán-Más A, Duarte RG, Silva TM, Guerlou-Demourgues L, Montemor MFG. Enhancement of the Ni-Co hydroxide response as Energy Storage Material by Electrochemically Reduced Graphene Oxide. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Ionic Liquids for Supercapacitor Applications. Top Curr Chem (Cham) 2017; 375:63. [PMID: 28560657 DOI: 10.1007/s41061-017-0150-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Supercapacitors are electrochemical energy storage devices in which the charge is accumulated through the adsorption of ions from an electrolyte on the surface of the electrode. Because of their large ionic concentrations, ionic liquids have widely been investigated for such applications. The main properties that have to be optimized are the electrochemical window, the electrical conductivity, and the interfacial capacitances. Ionic liquids allow a significant improvement of the former, but they suffer from their high viscosity. In this review, I will discuss the advantages and the inconvenience of using ionic liquids in supercapacitors. Some innovative approaches using mixtures of ionic liquids or redox-active ions will also be critically addressed.
Collapse
|
43
|
Li Z, Jeanmairet G, Méndez-Morales T, Burbano M, Haefele M, Salanne M. Confinement Effects on an Electron Transfer Reaction in Nanoporous Carbon Electrodes. J Phys Chem Lett 2017; 8:1925-1931. [PMID: 28403610 DOI: 10.1021/acs.jpclett.7b00458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoconfinement generally leads to a drastic effect on the physical and chemical properties of ionic liquids. Here we investigate how the electrochemical reactivity in such media may be impacted inside of nanoporous carbon electrodes. To this end, we study a simple electron transfer reaction using molecular dynamics simulations. The electrodes are held at constant electric potential by allowing the atomic charges on the carbon atoms to fluctuate. We show that the Fe3+/Fe2+ couple dissolved in an ionic liquid exhibits a deviation with respect to Marcus theory. This behavior is rationalized by the stabilization of a solvation state of the Fe3+ cation in the disordered nanoporous electrode that is not observed in the bulk. The simulation results are fitted with a recently proposed two solvation state model, which allows us to estimate the effect of such a deviation on the kinetics of electron transfer inside of nanoporous electrodes.
Collapse
Affiliation(s)
- Zhujie Li
- Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX , F-75005 Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459 , 80039 Amiens Cedex, France
| | - Guillaume Jeanmairet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX , F-75005 Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459 , 80039 Amiens Cedex, France
| | - Trinidad Méndez-Morales
- Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459 , 80039 Amiens Cedex, France
| | - Mario Burbano
- Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459 , 80039 Amiens Cedex, France
| | - Matthieu Haefele
- Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Mathieu Salanne
- Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX , F-75005 Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459 , 80039 Amiens Cedex, France
| |
Collapse
|
44
|
Vatamanu J, Bedrov D, Borodin O. On the application of constant electrode potential simulation techniques in atomistic modelling of electric double layers. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1279287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jenel Vatamanu
- Materials Science & Engineering Department, University of Utah, Salt Lake City, UT, USA
- Electrochemistry Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, MD, USA
| | - Dmitry Bedrov
- Materials Science & Engineering Department, University of Utah, Salt Lake City, UT, USA
| | - Oleg Borodin
- Electrochemistry Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, MD, USA
| |
Collapse
|
45
|
Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Acc Chem Res 2016; 49:2796-2806. [PMID: 27993000 DOI: 10.1021/acs.accounts.6b00460] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production. Metal-organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their low conductivity and poor stability still present major challenges toward their practical applications in supercapacitors. MOFs can be used as precursors for the preparation of NPCs with high porosity. Their parent MOFs can be prepared with endless combinations of organic and inorganic constituents by simple coordination chemistry, and it is possible to control their porous architectures, pore volumes, surface areas, etc. These unique properties of MOF-derived NPCs make them highly attractive for many technological applications. Compared with carbonaceous materials prepared using conventional precursors, MOF-derived carbons have significant advantages in terms of a simple synthesis with inherent diversity affording precise control over porous architectures, pore volumes, and surface areas. In this Account, we will summarize our recent research developments on the preparation of three-dimensional (3-D) MOF-derived carbons for supercapacitor applications. This Account will be divided into three main sections: (1) useful background on carbon materials for supercapacitor applications, (2) the importance of MOF-derived carbons, and (3) potential future developments of MOF-derived carbons for supercapacitors. This Account focuses mostly on carbons derived from two types of MOFs, namely, zeolite imidazolate framework-8 (ZIF-8) and ZIF-67. By using examples from our previous works, we will show the uniqueness of these carbons for achieving high performance by control of the chemical reactions/conditions as well proper utilization in asymmetric/symmetric supercapacitor configurations. This Account will promote further developments of MOF-derived multifunctional carbon materials with controlled porous architectures for optimization of their electrochemical performance toward supercapacitor applications.
Collapse
Affiliation(s)
- Rahul R. Salunkhe
- International
Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuf Valentino Kaneti
- International
Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jeonghun Kim
- Australian
Institute of Innovative Materials (AIIM), University of Wollongong, North
Wollongong, New South Wales 2500, Australia
| | - Jung Ho Kim
- Australian
Institute of Innovative Materials (AIIM), University of Wollongong, North
Wollongong, New South Wales 2500, Australia
| | - Yusuke Yamauchi
- International
Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian
Institute of Innovative Materials (AIIM), University of Wollongong, North
Wollongong, New South Wales 2500, Australia
| |
Collapse
|
46
|
Wang Z, Olmsted DL, Asta M, Laird BB. Electric potential calculation in molecular simulation of electric double layer capacitors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:464006. [PMID: 27624573 DOI: 10.1088/0953-8984/28/46/464006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson's equation, this method yields better accuracy and no supplemental assumptions.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
47
|
Vatamanu J, Vatamanu M, Borodin O, Bedrov D. A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:464002. [PMID: 27623976 DOI: 10.1088/0953-8984/28/46/464002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The structural properties of electrolytes consisting of solutions of ionic liquids in a polar solvent at charged electrode surfaces are investigated using classical atomistic simulations. The studied electrolytes consisted of tetraethylammonium tetrafluoroborate (NEt4-BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate (c2mim-BF4) and 1-octyl-3-methylimidazolium tetrafluoroborate (c8mim-BF4) salts dissolved in acetonitrile solvent. We discuss the influence of electrolyte concentration, chemical structure of the ionic salt, temperature, conducting versus semiconducting nature of the electrode, electrode geometry and surface roughness on the electric double layer structure and capacitance and compare these properties with those obtained for pure room temperature ionic liquids. We show that electrolytes consisting of solutions of ions can behave quite differently from pure ionic liquid electrolytes.
Collapse
Affiliation(s)
- Jenel Vatamanu
- University of Utah, MSE Department, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
48
|
Lian C, Liu H, Henderson D, Wu J. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:414005. [PMID: 27546561 DOI: 10.1088/0953-8984/28/41/414005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this study, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance-voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors.
Collapse
Affiliation(s)
- Cheng Lian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
49
|
Abedini A, Ludwig T, Zhang Z, Turner CH. Molecular Dynamics Simulation of Bismuth Telluride Exfoliation Mechanisms in Different Ionic Liquid Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9982-9992. [PMID: 27622940 DOI: 10.1021/acs.langmuir.6b02663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bismuth telluride (Bi2Te3) is a well-known thermoelectric material with potential applications in several different emerging technologies. The bulk structure is composed of stacks of quintuple sheets (with weak interactions between neighboring sheets), and the performance of the material can be significantly enhanced if exfoliated into two-dimensional nanosheets. In this study, eight different imidazolium-based ionic liquids are evaluated as solvents for the exfoliation and dispersion of Bi2Te3 at temperatures ranging from 350 to 550 K. Three distinct exfoliation mechanisms are evaluated (pulling, shearing, and peeling) using steered molecular dynamics simulations, and we predict that the peeling mechanism is thermodynamically the most favorable route. Furthermore, the [Tf2N-]-based ionic liquids are particularly effective at enhancing the exfoliation, and this performance can be correlated to the unique molecular-level solvation structures developed at the Bi2Te3 surfaces. This information helps provide insight into the molecular origins of exfoliation and solvation involving Bi2Te3 (and possibly other layered chalcogenide materials) and ionic liquid solvents.
Collapse
Affiliation(s)
- Asghar Abedini
- Department of Chemical and Biological Engineering, The University of Alabama , Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Thomas Ludwig
- Department of Chemical and Biological Engineering, The University of Alabama , Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Zhongtao Zhang
- Department of Chemical and Biological Engineering, The University of Alabama , Box 870203, Tuscaloosa, Alabama 35487, United States
| | - C Heath Turner
- Department of Chemical and Biological Engineering, The University of Alabama , Box 870203, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
50
|
Härtel A, Samin S, van Roij R. Dense ionic fluids confined in planar capacitors: in- and out-of-plane structure from classical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244007. [PMID: 27116552 DOI: 10.1088/0953-8984/28/24/244007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ongoing scientific interest in the properties and structure of electric double layers (EDLs) stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water treatment technologies. Classical density functional theory (DFT) is a promising framework for the study of the in- and out-of-plane structural properties of double layers. Supported by molecular dynamics simulations, we demonstrate the adequate performance of DFT for analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We further calculate, for the first time, the in-plane structure of the EDL within the framework of DFT. While our out-of-plane results already hint at structural in-plane transitions inside the EDL, which have been observed recently in simulations and experiments, our DFT approach performs poorly in predicting in-plane structure in comparison to simulations. However, our findings isolate fundamental issues in the theoretical description of the EDL within the primitive model and point towards limitations in the performance of DFT in describing the out-of-plane structure of the EDL at high concentrations and potentials.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudinger Weg 9, 55128 Mainz, Germany. Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | | | | |
Collapse
|