1
|
Meng H, Han B, Li F, Zhao J, Chen Z. Understanding the CH4 Conversion over Metal Dimers from First Principles. NANOMATERIALS 2022; 12:nano12091518. [PMID: 35564225 PMCID: PMC9100024 DOI: 10.3390/nano12091518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
Inspired by the advantages of bi-atom catalysts and recent exciting progresses of nanozymes, by means of density functional theory (DFT) computations, we explored the potential of metal dimers embedded in phthalocyanine monolayers (M2-Pc), which mimics the binuclear centers of methane monooxygenase, as catalysts for methane conversion using H2O2 as an oxidant. In total, 26 transition metal (from group IB to VIIIB) and four main group metal (M = Al, Ga, Sn and Bi) dimers were considered, and two methane conversion routes, namely *O-assisted and *OH-assisted mechanisms were systematically studied. The results show that methane conversion proceeds via an *OH-assisted mechanism on the Ti2-Pc, Zr2-Pc and Ta2-Pc, a combination of *O- and *OH-assisted mechanism on the surface of Sc2-Pc, respectively. Our theoretical work may provide impetus to developing new catalysts for methane conversion and help stimulate further studies on metal dimer catalysts for other catalytic reactions.
Collapse
Affiliation(s)
- Haihong Meng
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (H.M.); (B.H.)
| | - Bing Han
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (H.M.); (B.H.)
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (H.M.); (B.H.)
- Correspondence: (F.L.); (J.Z.); (Z.C.)
| | - Jingxiang Zhao
- Key Laboratory of Photonic and Electronic Bandgap Materials, College of Chemistry and Chemical Engineering, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Correspondence: (F.L.); (J.Z.); (Z.C.)
| | - Zhongfang Chen
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA
- Correspondence: (F.L.); (J.Z.); (Z.C.)
| |
Collapse
|
2
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
3
|
Zhang H, Li C, Lu Q, Cheng MJ, Goddard WA. Selective Activation of Propane Using Intermediates Generated during Water Oxidation. J Am Chem Soc 2021; 143:3967-3974. [PMID: 33667083 DOI: 10.1021/jacs.1c00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrochemical conversion of light alkanes to high-value oxygenates provides an attractive avenue for eco-friendly utilization of these hydrocarbons. However, such conversion under ambient conditions remains exceptionally challenging due to the high energy barrier of C-H bond cleavage. Herein, we investigated theoretically the partial oxidation of propane on a series of single atom alloys by using active intermediates generated during water oxidation as the oxidant. We show that by controlling the potential and pH, stable surface oxygen atoms can be maintained under water oxidation conditions. The free energy barrier for C-H bond cleavage by the surface oxygen can be as small as 0.54 eV, which can be surmounted easily at room temperature. Our calculations identified three promising surfaces as effective propane oxidation catalysts. Our complementary experiments demonstrated the partial oxidation of propane to acetone on Ni-doped Au surfaces. We also investigated computationally the steps leading to acetone formation. These studies show that the concept of exploiting intermediates generated in water oxidation as oxidants provides a fruitful strategy for electrocatalyst design to efficiently convert hydrocarbons into value-added chemicals.
Collapse
Affiliation(s)
- Haochen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chunsong Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Cholewinski M, Dixit M, Mpourmpakis G. Computational Study of Methane Activation on γ-Al 2O 3. ACS OMEGA 2018; 3:18242-18250. [PMID: 31458402 PMCID: PMC6644128 DOI: 10.1021/acsomega.8b02554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/12/2018] [Indexed: 06/10/2023]
Abstract
The C-H activation of methane remains a longstanding challenge in the chemical industry. Metal oxides are attractive catalysts for the C-H activation of methane due to their surface Lewis acid-base properties. In this work, we applied density functional theory calculations to investigate the C-H activation mechanism of methane on various sites of low-index facets of γ-Al2O3. The feasibility of C-H activation on different metal-oxygen (acid-base) site pairs was assessed through two potential mechanisms, namely, the radical and polar. The effect of surface hydroxylation on C-H activation was also investigated to examine the activity of γ-Al2O3 under realistic catalytic surface conditions (hydration). On the basis of our calculations, it was demonstrated that the C-H activation barriers for polar pathways are significantly lower than those of the radical pathways on γ-Al2O3. We showed that the electronic structure (s- and p-band center) for unoccupied and occupied bands can be used to probe site-dependent Lewis acidity and basicity and the associated catalytic behavior. We identified the dissociated H2 binding and final state energy as C-H activation energy descriptors for the preferred polar pathway. Finally, we developed structure-activity relationships for the C-H activation of methane on γ-Al2O3 that account for surface Lewis acid-base properties and can be utilized to accelerate the discovery of catalysts for methane (and shale gas) upgrade.
Collapse
|
5
|
Liu X, An W, Wang Y, Turner CH, Resasco DE. Hydrodeoxygenation of guaiacol over bimetallic Fe-alloyed (Ni, Pt) surfaces: reaction mechanism, transition-state scaling relations and descriptor for predicting C–O bond scission reactivity. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00282g] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small means big: DFT-calculated C–O bond length of adsorbed intermediates can serve as a good descriptor for predicting the C–O bond scission reactivity of phenolics over metal catalysts.
Collapse
Affiliation(s)
- Xiaoyang Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Wei An
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Yixing Wang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - C. Heath Turner
- Department of Chemical and Biological Engineering
- University of Alabama
- Tuscaloosa
- USA
| | - Daniel E. Resasco
- School of Chemical
- Biological and Materials Engineering and Center for Biomass Refining
- University of Oklahoma
- Norman
- USA
| |
Collapse
|
6
|
Understanding trends in hydrodeoxygenation reactivity of metal and bimetallic alloy catalysts from ethanol reaction on stepped surface. J Catal 2017. [DOI: 10.1016/j.jcat.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Latimer AA, Kulkarni AR, Aljama H, Montoya JH, Yoo JS, Tsai C, Abild-Pedersen F, Studt F, Nørskov JK. Understanding trends in C-H bond activation in heterogeneous catalysis. NATURE MATERIALS 2017; 16:225-229. [PMID: 27723737 DOI: 10.1038/nmat4760] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.
Collapse
Affiliation(s)
- Allegra A Latimer
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Ambarish R Kulkarni
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Hassan Aljama
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Joseph H Montoya
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jong Suk Yoo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Charlie Tsai
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Felix Studt
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jens K Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
8
|
Latimer AA, Aljama H, Kakekhani A, Yoo JS, Kulkarni A, Tsai C, Garcia-Melchor M, Abild-Pedersen F, Nørskov JK. Mechanistic insights into heterogeneous methane activation. Phys Chem Chem Phys 2017; 19:3575-3581. [DOI: 10.1039/c6cp08003k] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A framework for predicting whether a catalyst will activate methane through the radical or surface-stabilized pathway is presented.
Collapse
Affiliation(s)
- Allegra A. Latimer
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
| | - Hassan Aljama
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
| | - Arvin Kakekhani
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
| | - Jong Suk Yoo
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
| | - Ambarish Kulkarni
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
| | - Charlie Tsai
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
| | - Max Garcia-Melchor
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
- SUNCAT Center for Interface Science and Catalysis
| | - Jens K. Nørskov
- SUNCAT Center for Interface Science and Catalysis
- Department of Chemical Engineering
- Stanford University
- USA
- SUNCAT Center for Interface Science and Catalysis
| |
Collapse
|
9
|
Baek B, Aboiralor A, Wang S, Kharidehal P, Grabow LC, Massa JD. Strategy to improve catalytic trend predictions for methane oxidation and reforming. AIChE J 2016. [DOI: 10.1002/aic.15404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Byeongjin Baek
- Dept. of Chemical and Biomolecular Engineering; University of Houston; Houston TX 77204-4004
| | - Abraham Aboiralor
- Dept. of Chemical and Biomolecular Engineering; University of Houston; Houston TX 77204-4004
| | - Shengguang Wang
- Dept. of Chemical and Biomolecular Engineering; University of Houston; Houston TX 77204-4004
| | - Purnima Kharidehal
- Dept. of Chemical and Biomolecular Engineering; University of Houston; Houston TX 77204-4004
| | - Lars C. Grabow
- Dept. of Chemical and Biomolecular Engineering; University of Houston; Houston TX 77204-4004
| | - Jacob D. Massa
- Dept. of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey; Piscataway NJ 08854
| |
Collapse
|
10
|
Greeley J. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design. Annu Rev Chem Biomol Eng 2016; 7:605-35. [PMID: 27088666 DOI: 10.1146/annurev-chembioeng-080615-034413] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Scaling relationships are theoretical constructs that relate the binding energies of a wide variety of catalytic intermediates across a range of catalyst surfaces. Such relationships are ultimately derived from bond order conservation principles that were first introduced several decades ago. Through the growing power of computational surface science and catalysis, these concepts and their applications have recently begun to have a major impact in studies of catalytic reactivity and heterogeneous catalyst design. In this review, the detailed theory behind scaling relationships is discussed, and the existence of these relationships for catalytic materials ranging from pure metal to oxide surfaces, for numerous classes of molecules, and for a variety of catalytic surface structures is described. The use of the relationships to understand and elucidate reactivity trends across wide classes of catalytic surfaces and, in some cases, to predict optimal catalysts for certain chemical reactions, is explored. Finally, the observation that, in spite of the tremendous power of scaling relationships, their very existence places limits on the maximum rates that may be obtained for the catalyst classes in question is discussed, and promising strategies are explored to overcome these limitations to usher in a new era of theory-driven catalyst design.
Collapse
Affiliation(s)
- Jeffrey Greeley
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|