1
|
Palladium-Catalyzed Cross-Coupling Reactions of Borylated Alkenes for the Stereoselective Synthesis of Tetrasubstituted Double Bond. ORGANICS 2022. [DOI: 10.3390/org3030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The stereoselective formation of tetrasubstituted alkenes remains one of the key goals of modern organic synthesis. In addition to other methods, the stereoselective synthesis of tetrasubstituted alkenes can be achieved by means of cross-coupling reactions of electrophilic and nucleophilic alkene templates. The use of electrophilic templates for the stereoselective synthesis of tetrasubstituted alkenes has previously been described. Therefore, the present review summarizes the procedures available for the stereoselective preparation of tetrasubstituted alkenes using stable and isolable nucleophilic templates.
Collapse
|
2
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
3
|
"On-The-Fly" Non-Adiabatic Dynamics Simulations on Photoinduced Ring-Closing Reaction of a Nucleoside-Based Diarylethene Photoswitch. Molecules 2021; 26:molecules26092724. [PMID: 34066431 PMCID: PMC8125013 DOI: 10.3390/molecules26092724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nucleoside-based diarylethenes are emerging as an especial class of photochromic compounds that have potential applications in regulating biological systems using noninvasive light with high spatio-temporal resolution. However, relevant microscopic photochromic mechanisms at atomic level of these novel diarylethenes remain to be explored. Herein, we have employed static electronic structure calculations (MS-CASPT2//M06-2X, MS-CASPT2//SA-CASSCF) in combination with non-adiabatic dynamics simulations to explore the related photoinduced ring-closing reaction of a typical nucleoside-based diarylethene photoswitch, namely, PS-IV. Upon excitation with UV light, the open form PS-IV can be excited to a spectroscopically bright S1 state. After that, the molecule relaxes to the conical intersection region within 150 fs according to the barrierless relaxed scan of the C1–C6 bond, which is followed by an immediate deactivation to the ground state. The conical intersection structure is very similar to the ground state transition state structure which connects the open and closed forms of PS-IV, and therefore plays a crucial role in the photochromism of PS-IV. Besides, after analyzing the hopping structures, we conclude that the ring closing reaction cannot complete in the S1 state alone since all the C1–C6 distances of the hopping structures are larger than 2.00 Å. Once hopping to the ground state, the molecules either return to the original open form of PS-IV or produce the closed form of PS-IV within 100 fs, and the ring closing quantum yield is estimated to be 56%. Our present work not only elucidates the ultrafast photoinduced pericyclic reaction of the nucleoside-based diarylethene PS-IV, but can also be helpful for the future design of novel nucleoside-based diarylethenes with better performance.
Collapse
|
4
|
Kolmar T, Büllmann SM, Sarter C, Höfer K, Jäschke A. Development of High-Performance Pyrimidine Nucleoside and Oligonucleotide Diarylethene Photoswitches. Angew Chem Int Ed Engl 2021; 60:8164-8173. [PMID: 33476096 PMCID: PMC8049081 DOI: 10.1002/anie.202014878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Indexed: 01/17/2023]
Abstract
Nucleosidic and oligonucleotidic diarylethenes (DAEs) are an emerging class of photochromes with high application potential. However, their further development is hampered by the poor understanding of how the chemical structure modulates the photochromic properties. Here we synthesized 26 systematically varied deoxyuridine- and deoxycytidine-derived DAEs and analyzed reaction quantum yields, composition of the photostationary states, thermal and photochemical stability, and reversibility. This analysis identified two high-performance photoswitches with near-quantitative, fully reversible back-and-forth switching and no detectable thermal or photochemical deterioration. When incorporated into an oligonucleotide with the sequence of a promotor, the nucleotides maintained their photochromism and allowed the modulation of the transcription activity of T7 RNA polymerase with an up to 2.4-fold turn-off factor, demonstrating the potential for optochemical control of biological processes.
Collapse
Affiliation(s)
- Theresa Kolmar
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Simon M. Büllmann
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Christopher Sarter
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Katharina Höfer
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| |
Collapse
|
5
|
Kolmar T, Büllmann SM, Sarter C, Höfer K, Jäschke A. Development of High‐Performance Pyrimidine Nucleoside and Oligonucleotide Diarylethene Photoswitches. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Simon M. Büllmann
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Christopher Sarter
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Katharina Höfer
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
6
|
Nagasaka T, Sotome H, Morikawa S, Uriarte LM, Sliwa M, Kawai T, Miyasaka H. Restriction of the conrotatory motion in photo-induced 6π electrocyclic reaction: formation of the excited state of the closed-ring isomer in the cyclization. RSC Adv 2020; 10:20038-20045. [PMID: 35520419 PMCID: PMC9054205 DOI: 10.1039/d0ra03523h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The electrocyclic reaction dynamics of a photochromic dithiazolylarylene derivative, 2,3-dithiazolylbenzothiophene (DTA) was investigated by using time-resolved transient absorption and fluorescence spectroscopies. The closed-ring isomer of DTA undergoes cycloreversion through the conical intersection mediating the potential energy surfaces of the excited and ground states, which is in agreement with the Woodward–Hoffmann rules for the electrocyclic reactions of 6π electron systems. On the other hand, a large portion of the open-ring isomer undergoes cyclization along the distinct reaction scheme, in which the cyclization takes place in the excited state manifold leading to the formation of the excited state of the closed-ring isomer. The suppression of the geometrical motion of DTA due to the intramolecular interaction could open a new efficient reaction pathway resulting in the formation of the electronically excited state of the product. Restriction of the molecular geometry opens up a novel pathway in the cyclization reaction of a photochromic dithiazolylarylene derivative.![]()
Collapse
Affiliation(s)
- Tatsuhiro Nagasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Soichiro Morikawa
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Lucas Martinez Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman Lille 59000 France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman Lille 59000 France
| | - Tsuyoshi Kawai
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology Ikoma Nara 630-0192 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
7
|
Chen HS, Guo RY, Zhang QM, Liu YS. Tunable solid-state photochromism based on proton and anion-controlled structural transformation of pyridinium-based organic small molecules. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Sarter C, Dey S, Jäschke A. Photoswitchable Oligonucleotides Containing Different Diarylethene-Modified Nucleotides. ACS OMEGA 2019; 4:12125-12129. [PMID: 31460326 PMCID: PMC6682051 DOI: 10.1021/acsomega.9b01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Diarylethenes are a well-studied class of photoswitches and have often been linked to partner molecules to render them photoresponsive. Earlier, our lab developed a new type of diarylethenes in which the purine or pyrimidine base of a nucleoside or oligonucleotide serves as one of the two aryl residues of the photochromic system. Here, we report the synthesis of three different diarylethene-deoxyuridine phosphoramidites and their site-specific incorporation into oligodeoxynucleotides by solid-phase synthesis. Various DNA sequences carrying single or multiple, identical or different photoswitchable moieties are synthesized with high yield and purity. Upon UV irradiation, these DNA strands form a colored closed-ring isomer. The combination of different diarylethenes within one strand leads to an additive absorption spectrum. The photochromic DNA oligonucleotides are thermostable and photoreversible.
Collapse
|
9
|
Li Y, Pérez Lustres JL, Volpp HR, Buckup T, Kolmar T, Jäschke A, Motzkus M. Ultrafast ring closing of a diarylethene-based photoswitchable nucleoside. Phys Chem Chem Phys 2019; 20:22867-22876. [PMID: 30152514 DOI: 10.1039/c8cp03549k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deoxyuridine nucleosides embodied into diarylethenes form an especial class of photoswitchable compounds that are designed to stack and pair with DNA bases. The molecular geometry can be switched between "open" and "closed" isomers by a pericyclic reaction that affects the stability of the surrounding double helix. This potentially enables light-induced control of DNA hybridization at microscopic resolution. Despite its importance for the optimization of DNA photoswitches, the ultrafast photoisomerization mechanism of these diarylethenes is still not well understood. In this work, femtosecond transient absorption spectroscopy is applied to study the ring closing reaction upon UV excitation with 45 fs pulses. Excited-state absorption decays rapidly and gives rise to the UV-Vis difference spectrum of the "closed" form within ≈15 ps. Time constants of 0.09, 0.49 and 6.6 ps characterize the multimodal dynamics, where a swift recurrence in the signal anisotropy indicates transient population of the intermediate 21A-like state.
Collapse
Affiliation(s)
- Yang Li
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kellis DL, Sarter C, Cannon BL, Davis PH, Graugnard E, Lee J, Pensack RD, Kolmar T, Jäschke A, Yurke B, Knowlton WB. An All-Optical Excitonic Switch Operated in the Liquid and Solid Phases. ACS NANO 2019; 13:2986-2994. [PMID: 30758934 DOI: 10.1021/acsnano.8b07504] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The excitonic circuitry found in photosynthetic organisms suggests an alternative to electronic circuits, but the assembly of optically active molecules to fabricate even simple excitonic devices has been hampered by the limited availability of suitable molecular scale assembly technologies. Here we have designed and operated a hybrid all-optical excitonic switch comprised of donor/acceptor chromophores and photochromic nucleotide modulators assembled with nanometer scale precision using DNA nanotechnology. The all-optical excitonic switch was operated successfully in both liquid and solid phases, exhibiting high ON/OFF switching contrast with no apparent cyclic fatigue through nearly 200 cycles. These findings, combined with the switch's small footprint and volume, estimated low energy requirement, and potential ability to switch at speeds in the 10s of picoseconds, establish a prospective pathway forward for all-optical excitonic circuits.
Collapse
Affiliation(s)
- Donald L Kellis
- Micron School of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , United States
| | - Christopher Sarter
- Institute of Pharmacy and Molecular Biotechnology , Heidelberg University , 69120 Heidelberg , Germany
| | - Brittany L Cannon
- Micron School of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , United States
- Department of Chemistry & Biochemistry , Boise State University , Boise , Idaho 83725 , United States
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , United States
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology , Heidelberg University , 69120 Heidelberg , Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology , Heidelberg University , 69120 Heidelberg , Germany
| | - Bernard Yurke
- Micron School of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , United States
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , United States
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , United States
| |
Collapse
|
11
|
Schweigert C, Babii O, Afonin S, Schober T, Leier J, Michenfelder NC, Komarov IV, Ulrich AS, Unterreiner AN. Real‐Time Observation of Diarylethene‐Based Photoswitches in a Cyclic Peptide Environment. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Caroline Schweigert
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe (Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
| | - Tim Schober
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Julia Leier
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe (Germany
| | - Nadine C. Michenfelder
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe (Germany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 01601 Kyiv Ukraine
- Lumobiotics GmbH Auer Str. 2 76227 Karlsruhe Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Andreas Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe (Germany
| |
Collapse
|
12
|
Kraack JP, Motzkus M, Buckup T. Excited State Vibrational Spectra of All- trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. J Phys Chem B 2018; 122:12271-12281. [PMID: 30507189 DOI: 10.1021/acs.jpcb.8b08495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ultrafast structural changes during the photoinduced isomerization of the retinal-protonated Schiff base (RPSB) is still a poorly understood aspect in the retinal's photochemistry. In this work, we apply pump-degenerate four-wave mixing (pump-DFWM) to all- trans retinal (ATR) and retinal Schiff bases (RSB) to resolve coherent high- and low-frequency vibrational signatures from excited electronic states. We show that the vibrational spectra of excited singlet states in these samples exhibit pronounced differences compared to the relaxed ground state. Pump-DFWM results indicate three major features for ATR and RSB. (i) Excited state vibrational spectra of ATR and RSB consist predominately of low-frequency modes in the energetic range 100-500 cm-1. (ii) Excited state vibrational spectra show distinct differences for excitation in specific regions of electronic transitions of excited state absorption and emission. (iii) Low-frequency modes in ATR and RSB are inducible during the entire lifetime of the excited electronic states. This latter effect points to a transient molecular structure that, following initial relaxation between different excited electronic states, does not change anymore over the lifetime of the finally populated excited electronic state.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| |
Collapse
|
13
|
Fagnani DE, Bou Zerdan R, Castellano RK. Synthesis, Optoelectronic Properties, Self-Association, and Base Pairing of Nucleobase-Functionalized Oligothiophenes. J Org Chem 2018; 83:12711-12721. [PMID: 30230836 DOI: 10.1021/acs.joc.8b02138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Device-relevant π-conjugated oligothiophenes with the canonical nucleobases directly embedded into the π-framework have been designed, synthesized, and characterized. These oligomers offer the ability to tune optoelectronic properties via the intimate merging of the nucleobase molecular electronic structure with base-pairing fidelity. Analysis of their optical and electronic properties in a hydrogen-bond-disrupting solvent (DMF) indicates that the nucleobase identity influences the intrinsic electronic properties of the semiconductors. These differences are supported by DFT calculations which demonstrate that the HOMO/LUMO orbitals are distributed differently for each compound. The solubility and competition between self-association and base pairing in a hydrogen-bond-supporting solvent (chloroform) was studied to better understand the oligomer behavior under conditions relevant for downstream solution processing into thin-film devices. These solution studies reveal that in each case base-pairing is preferred to self-aggregation; the relatively weak heteroassociation of 1A-1U (35 ± 5 M-1) should be amenable to facile solution processing and successive hydrogen bond formation in the solid state, while the strong heteroassociation between 1G and 1C (>104 M-1) should enable assemblies to be preformed in solution. These results are expected to enable the synthesis of more complex π-conjugated architectures and facilitate their extension to optoelectronic devices.
Collapse
Affiliation(s)
- Danielle E Fagnani
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611 , United States
| | - Raghida Bou Zerdan
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611 , United States
| | - Ronald K Castellano
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611 , United States
| |
Collapse
|
14
|
Lubbe AS, Szymanski W, Feringa BL. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem Soc Rev 2018; 46:1052-1079. [PMID: 28128377 DOI: 10.1039/c6cs00461j] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is a growing interest in the photoregulation of biological functions, due to the high level of spatiotemporal precision achievable with light. Additionally, light is non-invasive and waste-free. In particular, the photoregulation of oligonucleotide structure and function is a rapidly developing study field with relevance to biological, physical and material sciences. Molecular photoswitches have been incorporated in oligonucleotides for 20 years, and the field has currently grown beyond fundamental studies on photochemistry of the switches and DNA duplex stability, and is moving towards applications in chemical biology, nanotechnology and material science. Moreover, the currently emerging field of photopharmacology indicates the relevance of photocontrol in future medicine. In recent years, a large number of publications has appeared on photoregulation of DNA and RNA structure and function. New strategies are evaluated and novel, exciting applications are shown. In this comprehensive review, the key strategies for photoswitch inclusion in oligonucleotides are presented and illustrated with recent examples. Additionally the applications that have emerged in recent years are discussed, including gene regulation, drug delivery and materials design. Finally, we identify the challenges that the field currently faces and look forward to future applications.
Collapse
Affiliation(s)
- Anouk S Lubbe
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. and Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
15
|
Zhao P, Bu Y. Azobenzene-bridged diradical janus nucleobases with photo-converted magnetic properties between antiferromagnetic and ferromagnetic couplings. J Comput Chem 2018; 39:1398-1405. [DOI: 10.1002/jcc.25207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Peiwen Zhao
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 People's Republic of China
| |
Collapse
|
16
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
17
|
Khodko A, Khomenko V, Shynkarenko Y, Mamuta O, Kapitanchuk O, Sysoiev D, Kachalova N, Huhn T, Snegir S. Ultrafast ring-closing reaction dynamics of a photochromic furan-based difurylethene. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Kumpulainen T, Lang B, Rosspeintner A, Vauthey E. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chem Rev 2016; 117:10826-10939. [DOI: 10.1021/acs.chemrev.6b00491] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatu Kumpulainen
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Bernhard Lang
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
19
|
Wang HX, Xi DD, Xie MS, Wang HX, Qu GR, Guo HM. Nucleoside-Based Diarylethene Photoswitches: Synthesis and Photochromic Properties. Chembiochem 2016; 17:1216-20. [DOI: 10.1002/cbic.201600171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Hai-Xia Wang
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Dan-Dan Xi
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Ming-Sheng Xie
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Hui-Xuan Wang
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Gui-Rong Qu
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Hai-Ming Guo
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| |
Collapse
|